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ABSTRACT:
There are substantial knowledge gaps regarding both the bioacoustics and the responses of animals to sounds

associated with pre-construction, construction, and operations of offshore wind (OSW) energy development. A

workgroup of the 2020 State of the Science Workshop on Wildlife and Offshore Wind Energy identified studies for

the next five years to help stakeholders better understand potential cumulative biological impacts of sound and vibra-

tion to fishes and aquatic invertebrates as the OSW industry develops. The workgroup identified seven short-term

priorities that include a mix of primary research and coordination efforts. Key research needs include the examina-

tion of animal displacement and other behavioral responses to sound, as well as hearing sensitivity studies related to

particle motion, substrate vibration, and sound pressure. Other needs include: identification of priority taxa on which

to focus research; standardization of methods; development of a long-term highly instrumented field site; and exami-

nation of sound mitigation options for fishes and aquatic invertebrates. Effective assessment of potential cumulative

impacts of sound and vibration on fishes and aquatic invertebrates is currently precluded by these and other knowl-

edge gaps. However, filling critical gaps in knowledge will improve our understanding of possible sound-related

impacts of OSW energy development to populations and ecosystems. VC 2022 Acoustical Society of America.
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I. INTRODUCTION AND PURPOSE

Offshore wind (OSW) energy is a growing industry in

the U.S. and around the world, and can play a key role in

meeting decarbonization goals (Cranmer and Baker, 2020).

The development and operation of OSW also has the poten-

tial for short- and long-term effects on the in-air and under-

water environment that can be perceived as either positive

or negative for taxa of interest. For example, sounds

associated with pre-construction activities, construction, and

operations of OSW energy development have the potential

to adversely affect aquatic life in several ways. However,

there are substantial gaps in knowledge regarding animals’

bioacoustics and individual responses to OSW sound. Even

less is known about the potential for sound-related popula-

tion- or ecosystem-level impacts from cumulative OSW

development activities. The purpose of this paper is to iden-

tify the most pressing data gaps and inform sound-related

research as the OSW industry expands in the U.S.

A. Origin of this paper

This paper arises from the 2020 State of the Science

Workshop on Wildlife and Offshore Wind Energy, hosted

a)Electronic mail: apopper@umd.edu, ORCID: 0000-0002-0312-7125.
b)ORCID: 0000-0002-0771-4642.
c)ORCID: 0000-0002-5098-3354.
d)ORCID: 0000-0002-8598-9705.
e)ORCID: 0000-0002-8949-8735.
f)ORCID: 0000-0002-7478-0172.
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by the New York State Energy Research and Development

Authority (NYSERDA; 2020) from November 16–20, 2020.

The aim of the workshop was to assess the state of the

knowledge regarding potential cumulative impacts of off-

shore wind development on wildlife populations and

ecosystems.

Subsequent to the workshop, attendees formed seven

workgroups focusing on benthos, fishes and aquatic inverte-

brates, birds, bats, marine mammals, sea turtles, and envi-

ronmental change. The goal for each workgroup was to

identify a list of studies that could be implemented in the

next five years to position the stakeholder community to bet-

ter understand potential cumulative biological impacts as

the OSW industry develops in the U.S. The current paper is

based on the report (Popper et al., 2021) from the work-

group focused on fishes and aquatic invertebrates, and spe-

cifically on issues related to the potential impacts of sound

and vibration associated with OSW farms on fishes and

aquatic invertebrates. Other types of potential OSW-related

impacts to fishes and aquatic invertebrates were considered

elsewhere (e.g., Twigg et al., 2020; Degraer et al., 2021).

B. Goals

The primary goal of this paper is to present the priorities

identified by the Fishes and Aquatic Invertebrates Workgroup

as recommendations for near-term research and coordination on

sound and bioacoustics to inform the development of OSW

farms (Popper et al., 2021). The authors have preserved the

findings and recommendations of that report as much as possi-

ble but have refined recommendations for purposes of clarity

and precision. The intended audience for this paper encom-

passes a range of stakeholders including researchers, state and

federal agencies, OSW energy developers, non-governmental

organizations, regional science entities, and other potential

funding entities that could target these priorities for future

funding.

The priorities identified in this paper should not be inter-

preted as research that must occur prior to any development

activity. Rather, these priorities are intended to further inform

environmentally responsible development and minimize

cumulative impacts, and many of these research needs are spe-

cifically directed at understanding and measuring impacts as

the OSW industry progresses. Some data are available from

OSW studies in Europe and around the world (e.g., Thomsen

et al., 2016; Gill et al., 2018; Mooney et al., 2020), but

industrial-scale OSW development has yet to occur in the

U.S., providing an opportunity for targeted research. While
this paper focuses to a degree on issues relating to the OSW
industry in the eastern U.S., the approach and resulting rec-
ommendations are generally applicable to OSW development
globally. Indeed, the issues can be considered a focusing of an

earlier gap analysis (Normandeau, 2012; Hawkins et al.,
2015) that dealt with all cases where there are long-term

increases in anthropogenic sound.

This paper, and the report from which it is derived,

focuses on better understanding the potential for negative

impacts from sound and vibrations related to OSW energy

development. This is not intended to imply that sound is the

only aspect of OSW development that will affect fishes and

aquatic invertebrates, nor that all effects are negative. For a

comprehensive examination of the potential effects of OSW

development on fishes and fisheries, including attraction of

fishes due to artificial reef effects, see a recent special issue

of Oceanography on this topic (Twigg et al., 2020).

Likewise, the focus of this paper is not intended to

imply that OSW is causing greater impacts than other stres-

sors. Indeed, OSW farms may provide resources, such as

food or shelter for some species, particularly those that pre-

fer high-structure environments (Degraer et al., 2020). For

commercially and recreationally fished species, the interac-

tions between fisheries and OSW (for example, changes in

fishing patterns and use of certain gear types in and around

OSW turbines) may also be relevant to future analyses

(Methratta et al., 2020). Regardless, cumulative impact

estimates specifically for OSW energy development will be

useful in broader cumulative impact frameworks that include

impacts from multiple types of anthropogenic activities.

II. BACKGROUND

A. Definitions and concepts

To ensure continuity of meaning for this paper and

across the various workgroups, OSW energy development
was defined to include activities related to pre-construction

(such as seismic surveys), construction, and operations of

OSW farms (Fig. 1). Cumulative impacts were defined for

this subject matter as collective changes to populations or

ecosystems across spatiotemporal scales that are caused

by anthropogenic (human-made) activities relating to the

development of multiple OSW energy facilities. The terms

impact and effect were defined as per Hawkins et al. (2020),

such that an effect is considered to be a change caused by an

exposure to an anthropogenic activity that is a departure

from a prior state, condition, or situation, which is called the

“baseline” condition. Impact is defined as a biologically sig-

nificant effect that reflects a change whose direction, magni-

tude, and/or duration is sufficient to have consequences for

the fitness of individuals or populations.

In the context of this paper, all three of the above effect

and impact terms are used specifically in relation to sound

and vibrations. For ease of description, and unless otherwise

indicated, the terms sound and acoustic incorporate sound

pressure, particle motion, and substrate vibration (see Sec.

II B). In this paper, fishes are inclusive of cartilaginous and

bony fishes. Aquatic invertebrate refers to any invertebrate

species in the marine environment or substrate that detects

sound and/or vibration.

B. Underwater sound and hearing

There are several key concepts relating to underwater

sound that are critical for appreciation of the ideas and rec-

ommendations in this paper. For a fuller understanding of

underwater sound, readers are directed to several recent
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papers (Hawkins and Popper, 2018; Popper and Hawkins,

2018; Hawkins et al., 2021). In addition, a useful and very

clear discussion of all aspects of underwater sound and

animal bioacoustics can be found at Discovery of Sound in

the Sea.

Importantly, the energy radiated from any underwater

sound source—such as a driven pile, a boat, a fish making

sounds, etc.—includes both sound pressure and particle

motion. Sound pressure refers to the fluctuations in the den-

sity of the medium due to the presence of the sound, while

particle motion refers to the movement of particles that

make up the medium during that sound. Sound pressure is

more familiar because it is the aspect of sound that most ter-

restrial animals can sense (including humans), and is mea-

sured using microphones and hydrophones.

However, it is now understood that all fishes, and prob-

ably all sound-detecting invertebrates, hear by the detection

of particle motion, while only a subset of bony fishes are

able to detect sound pressure (Nedelec et al., 2016; Popper

and Hawkins, 2018; Dinh and Radford, 2021). Thus, any

consideration of the sounds that might affect fishes must not

only include measurement of particle motion but also an

understanding of how, and how well, fishes and inverte-

brates detect and respond to it.

In addition, it is increasingly apparent that fishes and

aquatic invertebrates that live in, on, or close to the substrate

(e.g., the seabed) are also potentially affected by vibrations

(e.g., Roberts and Elliott, 2017; Hawkins et al., 2021;

Roberts and Howard, 2021). These vibrations are initiated

by direct contact of a sound source with the substrate, such

as during pile driving, and by sound energy entering the sub-

strate through the water from intense sources, such as seis-

mic air guns (e.g., Gisiner, 2016). Sound pressure and

particle motion can also emanate from the substrate back

into the water column as a result of such vibrations

(Hawkins et al., 2021).

The reason to understand underwater sound is that

sounds and vibrations provide a great deal of important infor-

mation to animals about their environment, potential mates,

competitors, predators, and prey, just as sound in air is criti-

cal for the lives of all terrestrial animals (e.g., Fay and

Popper, 2000; Slabbekoorn et al., 2010; Hawkins and

Popper, 2018; Slabbekoorn, 2018). Indeed, sound is an

essential communication channel for aquatic vertebrates and

many aquatic invertebrates (reviewed in Hawkins et al.,
2015; Popper and Hawkins, 2019). Thus, anything that inter-

feres with the ability of animals to detect sounds has the

potential to significantly impair survival of individuals and

populations (see Slabbekoorn et al., 2018). Some sounds pro-

duced by anthropogenic sources may also elicit behavioral

responses and/or physiological effects that interfere with bio-

logical activities, such as feeding or spawning (Carroll et al.,
2017; Jones et al., 2021; Puig-Pons et al., 2021).

III. APPROACH USED TO DEVELOP PRIORITIES

The workgroup met virtually four times in the winter

and spring of 2020–2021 to identify topics that seemed

feasible to initiate on a short (<5 yr) timeframe. These were

ranked by workgroup members in an online survey. The

FIG. 1. (Color online) Major sources of sound and vibration from offshore wind farms during the pre-construction (left), construction (center), and opera-

tional (right) periods (not to scale). Sounds emitted from each source are indicated with red lines. Acoustic energy put into the substrate as a result of geo-

physical and geotechnical surveys and the pounding of piles during construction can emanate back into the water at considerable distances from the sources

themselves (Popper and Hastings, 2009; Hawkins et al., 2021) (Figure copyright 2021 Iain Stenhouse/Biodiversity Research Institute, all rights reserved).
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topics given here are, therefore, listed in order of priority

according to these survey responses (i.e., by weighted aver-

age rank score), with the highest-priority topic listed first.

However, it is recognized that several of these priorities

could be pursued simultaneously to best inform OSW

energy development as the industry progresses.

For each topic (listed A to G), information is included

on the study goal, potential methods, and related informa-

tion with relevance to the proposed study (i.e., existing data,

or other efforts with which a proposed study should be coor-

dinated). Several priorities identified during workgroup dis-

cussions were determined to require longer timelines for

completion or to be at least partially addressed through

existing research projects. These are briefly noted in Sec. V

following the list of short-term priorities.

IV. PRIORITIES FOR THE NEXT FIVE YEARS

For each topic (listed A to G), the workgroup identified

goals for research and potential methodological approaches

for studies to achieve those goals.

A. Identify key species/groups for studies of the
effects of OSW sound exposure on fishes and
invertebrates

There are more than 34 000 species of fishes (e.g.,

Fishbase) and far more species of aquatic invertebrates.

While most species are not located in the vicinity of likely

OSW development areas, either in the eastern U.S. or else-

where, the number of species in those areas is still too

numerous to study individually. Thus, it is necessary to pri-

oritize species for study that have the most relevance for

understanding the potential effects of sound from OSW in a

particular region and are “representative” of other potential

species of interest.

1. Goal

Concentrate OSW and sound-related research on a few

key species that represent varied hearing capabilities, hear-

ing mechanisms, life stages, and ecological niches, as sug-

gested by Popper et al. (2014) and Hawkins et al. (2020).

Identification of representative species will help focus

research and improve our understanding of the potential for

individual and population effects to those, and similar, spe-

cies. This also allows some level of generalization of study

results over the greatest number of fish and invertebrate spe-

cies, which will help us to understand community responses

over the longer term.

2. Potential methods

Selecting specific species for study is complex, espe-

cially given the substantial variation in hearing characteris-

tics that can exist, even among closely related species.

Initial development of fish groupings for selection of

research species has been provided in the American

National Standards Institute (ANSI) guidance document

cited as Popper et al. (2014). Possible criteria for the selec-

tion of focal species include:

• Species known to occur within and near OSW areas (e.g.,

Friedland et al., 2021).
• Species of fishes and aquatic invertebrates with a repre-

sentative range of hearing capabilities and mechanisms

(Popper et al., 2014; Hawkins et al., 2020), inasmuch as

these data are available.
• Species that represent a range of ecological niches (differ-

ent habitats, diets, etc.).
• Important species, defined as some combination of:

� Species of commercial and recreational fishing impor-

tance that occur in OSW areas.

� Species of ecosystem importance (e.g., key forage fish/

prey species, sentinel, keystone, or umbrella species) in

OSW areas.

� Protected and at-risk species in OSW areas.
• Species with potential vulnerability to OSW, including:

� Species that spawn in or near OSW areas, as well as

species that transit OSW areas during reproductive

migrations.

� Structure-oriented species that may be common in (and

may be attracted to) OSW areas (Degraer et al., 2020).

� Species that are expected or known to be sensitive to

displacement from OSW construction or operations.

� Species that may be vulnerable to substrate vibration at

one or more life history stages (given the lack of data

on this type of effect).

Species that can be classified in more than one of the

above groups could be given higher priority for selection as

study species.

B. Conduct behavioral response studies to examine
non-displacement changes

While some research exists on the responses of fishes

and aquatic invertebrates to a variety of different sounds,

less is known about how sounds specifically emitted from

OSW energy development could potentially alter behaviors

(e.g., Wahlberg and Westerberg, 2005; Siddagangaiah et al.,
2021; Zhang et al., 2021). However, the available data sug-

gest that behavioral changes resulting from exposure to

sounds from OSW energy development could be a concern

for at least some species (e.g., Perrow et al., 2011; Thomsen

et al., 2012; Hawkins et al., 2014; Iafrate et al., 2016;

Methratta and Dardick, 2019; Kok et al., 2021; Puig-Pons

et al., 2021). A range of behavioral changes with potential

fitness consequences have been hypothesized, in part, based

on observations or inference from responses to other anthro-

pogenic or environmental noise sources. These include

changes in movement patterns that increase predation risk or

increase energetic requirements, reductions in foraging

activity or predation success rates, changes in breeding or

display behavior (including spawning aggregations), and

reductions or changes in vocalization behavior that may

affect reproductive success (e.g., Roberts et al., 2015;
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Bruintjes et al., 2016; Herbert-Read et al., 2017; Jones

et al., 2021).

1. Goal

Examine behavioral and physiological changes in rela-

tion to sound exposure that may have implications for fitness,

including individual survival, predator–prey relationships,

and/or breeding success (e.g., Weilgart, 2017).

2. Potential methods

• Examine changes in acoustic behavior, movement behav-

ior, reproductive behavior, predation success rates, or

other behaviors during the pre-construction, construction,

and operational periods of OSW development. A focus on

changes with survival or reproductive implications (e.g.,

changes in spawning behavior) will allow investigation of

population-level effects. It can be difficult to measure fit-

ness directly; while this should be the goal where possi-

ble, in some cases, it may be easier to measure behavioral

or physiological changes with fitness implications.

Response variables of interest must be chosen carefully.
• Choice of focal species should be informed by Priority A

(Sec. IV A). Both mobile and non-mobile species and var-

ied life stages require attention and will require different

study designs. Some existing lab studies could inform the

choice of focal species and behaviors to examine in the

field (e.g., Jones et al., 2021; but see next bullet). It may

be effective to focus on species that are associated with

the types of habitats frequently present at OSW facilities

(e.g., Friedland et al., 2021).
• Much of this work must be conducted in the field, since

behaviors exhibited by captive animals (e.g., in tanks or

cages) may be very different than those of wild unre-

strained animals, even in response to the same sounds

(Popper et al., 2019). There are some types of studies

associated with sound that may only be easily done in the

lab, however, such as physiological studies (e.g., examin-

ing the potential effects of sound on stress levels). Lab

studies must be carefully designed so that the sounds to

which the animals are exposed are well quantified and as

representative as possible of sound pressure, particle

motion, and substrate vibration that animals might be

exposed to in the field (Rogers et al., 2016). There was a

lack of consensus among workgroup members about the

value of initial lab studies to inform the choice of field

studies, and specifically, whether the behavior and physi-

ology of animals restrained in tanks or pens is at all simi-

lar to what they would exhibit in response to a stimulus

when in the wild and unrestrained. Comparisons between

field and laboratory responses within a species would be a

profitable avenue to explore this question (e.g., Pieniazek

et al., 2020).
• Develop methods to examine behavioral effects of sub-

strate vibration on invertebrates (e.g., Roberts and Elliott,

2017; Roberts and Howard, 2021). Given the novelty of

the research area, highly controlled small-scale studies in

the lab appear to be an appropriate first step, although an

understanding of such an environment in terms of the

stimulus parameters needs to be further developed.
• If feasible, this research should ideally be conducted in

conjunction with behavioral response studies of displace-

ment (described in Sec. V C).

C. Conduct a multi-method behavioral response study
to examine animal displacement

A critical question is whether the sounds associated

with development and/or operation of OSW will result in

short- or long-term changes in the ecosystem due to animals

leaving the area, either temporarily or permanently (e.g.,

Thomsen et al., 2016). There are few data that currently

address this issue. OSW developers are generally required to

monitor underwater sound pressure levels produced by

activities, such as pile driving (reviewed in Thomsen and

Verfuss, 2019), but studies of resulting displacement of

fishes are limited, as are studies of whether animals return to

the sites from which they are displaced after termination of

pile driving (e.g., Perrow et al., 2011; Iafrate et al., 2016).

1. Goal

Examine displacement due to behavioral response of

one or more species identified in Sec. IV A (or via other

efforts), including questions such as: are fishes and aquatic

invertebrates displaced by construction and/or operational

noise? If so, how far from the stressor are species displaced

horizontally or vertically (including into the sediment)? Do

they return to the area afterward? If so, for how long are

they displaced?

2. Potential methods

Studies should employ a multi-method approach (e.g.,

acoustic telemetry, passive acoustic monitoring, cameras,

sonar, spatial modeling), with methods tailored to address

the geographic scale of interest, focal species, and character-

istics of the study location, such as turbidity and currents.

• The technology and methodologies exist to conduct many

of these experiments and monitoring studies in the field.

This is important, as the spatial range of effects may be

too large to measure in the lab. Ecological/spatial models

can help to identify parameters to be measured. In particu-

lar, power analysis should be conducted prior to initiating

field work, such that each field study is appropriately

designed to test the chosen hypothesis (see Hein€anen

et al., 2018).
• A focus is suggested specifically on displacement during

spawning or other aggregation periods, since: (1) spawn-

ing areas are discrete locations with suspected sensitivity

to sound; and (2) a focus on spawning (or other biologi-

cally important life functions) facilitates an understanding

of the fitness consequences of behavioral changes that are

observed. A focus on known foraging/feeding areas could

also be useful for similar reasons.
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D. Promote standardized collection of high-quality
data

Sound is not the only OSW-related stressor that may

affect marine ecosystems. To get a comprehensive picture of

the biological effects and resulting impacts of OSW, a vari-

ety of biological and non-biological data must be collected,

and this must done in a standardized fashion so that monitor-

ing results are comparable between locations (see Thomsen

et al., 2021). In relation to the effects of OSW sound and

vibration on fishes and aquatic invertebrates, it is essential

that studies use comparable methods to record, analyze, and

present data. Standardization will not only allow for much

more effective and useful comparisons between studies but

also for a more comprehensive assessment of cumulative

impacts. To date, guidance for acoustic research standardiza-

tion of methodologies and data have primarily focused on

marine mammals, rather than on fishes and invertebrates.

1. Goal

Develop improved monitoring and data collection plans

that promote standardization and collection of high-quality

acoustic data for fishes and aquatic invertebrates. Plans

should include recommended acoustic terminology and met-

rics (e.g., ISO18405, 2017; Ainslie et al., 2021), methods to

answer different types of questions (e.g., appropriate sound

sources to use for playback experiments), and approaches

for standardizing technologies to measure and record sounds

(e.g., instrumentation to deploy on buoys and/or turbines)

such that data can be aggregated for larger-scale analyses

(e.g., ISO18406, 2017).

2. Potential methods

• Develop standard methods of measurement for sound pres-

sure, particle motion, and substrate vibration, or identify

appropriate existing standards where possible. Methods

and metrics standardization could inform many of the

other priority studies identified herein. Still, workgroup

members noted that sufficient methods information is

already available such that important field studies should

not be delayed until more comprehensive standardized

methods and metrics can be finalized. Recommendations

and guidance might, in part, build from:

� Atlantic Deepwater Ecosystem Observatory Network

(ADEON), Joint Monitoring Programme for Ambient

Noise North Sea (JOMOPANS), and other specifications

for acoustic measurements of soundscapes (Ainslie, 2011;

Dekeling et al., 2014a; Dekeling et al., 2014b; ISO18405,

2017; Ainslie et al., 2018). There is a need to determine

what is missing specifically for fishes and invertebrates, as

well as for particle motion and substrate vibration.

� Standards for underwater sound assessment and measure-

ment of particle motion that are currently in development

by the Exploration and Production Sound and Marine

Life Joint Industry Programme (Nedelec et al., 2021).

� Lessons learned from the U.S. Bureau of Ocean Energy

Management (BOEM) Realtime Opportunity for

Development of Environmental Observations (RODEO)

project (e.g., Amaral et al., 2020), as well as from research

on oil and gas and other industries, as relevant.
• Develop consensus for the metrics of description for sound

pressure, particle motion, and substrate vibration. For particle

motion, for example, are data presented in terms of velocity,

acceleration, or other criteria? Similarly, for sound pressure,

when is it best to use root-mean-square (RMS), peak, or

sound exposure level (SEL)? Moreover, what would these

metrics mean in understanding animal responses, how are

they calculated, and how do fishes respond?
• Consider whether kurtosis (Qiu et al., 2020) should be

used as a metric for sound exposure, as it has been

adopted for sound exposure studies for humans.
• Recommend standardized measurement approaches to obtain

the most useful recordings of sound pressure, particle motion,

and substrate vibration (e.g., Hawkins et al., 2020).
• Include standards for experimentation-controlled exposures.
• Include a focus on experimental design and collection of

control data in a Before-After Control-Impact (BACI),

Before-After Gradient (BAG), or other design as appro-

priate (Methratta, 2021).
• Equipment and experimental approaches might best be

developed in a controlled environment (e.g., Duncan

et al., 2016; Gray et al., 2016a; Gray et al., 2016b; Jones

et al., 2019; Popper and Hawkins, 2021). Lab methods and

metrics for studies of responses to substrate vibration are

especially needed. However, tank acoustics are very dif-

ferent than the acoustics in open water, and so it is not pos-

sible to easily, or accurately, extrapolate acoustics from

tank studies to the natural environment (e.g., Rogers et al.,
2016). In fact, in terms of behavioral questions, field

investigations (where possible) often generate more useful

results than lab-based research, and the two methods

should be paired to compare results where appropriate.
• Metrics and methods recommendations should be written

in such a way as to be generally understandable to a non-

expert audience, recognizing that a range of OSW devel-

opers, consultants, regulators, and other stakeholders may

reference them. Where possible, specific instrumentation

should be recommended that is affordable and easy to use

by non-experts.
• Have an open data policy for all findings and make data

publicly available on as short a timescale as is feasible, so

that results can be used by others dealing with similar

issues. It should be noted that in some cases, appropriate

databases may need to be developed or modified to pub-

licly house these data (NYSERDA, 2021).

E. Conduct hearing sensitivity studies for selected
species, including detection of particle motion,
vibration, and sound pressure

Little is known about sound detection capacities of

fishes (Ladich and Fay, 2013; Popper and Hawkins, 2021),

and even less is currently known about hearing in aquatic

invertebrates (Hawkins et al., 2015). While many of the
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studies that would accompany Priorities B and C (Secs.

IV B and IV C) can be done without knowing hearing capa-

bilities directly, data on hearing will be imperative to extrap-

olate results to other sites, species, or research questions. In

particular, almost nothing is known about vibration detec-

tion by fishes or aquatic invertebrates (Roberts and Elliott,

2017).

1. Goal

Investigate detection of sound pressure, particle motion,

and vibration, including bandwidth of detection, minimal

level of signal detectable at each frequency (threshold, or

sensitivity), and behavioral responses. These studies will

inform models predicting spatial scales of effects, among

other purposes.

2. Potential methods

• While electrophysiological response may be useful to

broadly approximate thresholds, data must be obtained

using methods that involve behavioral responses since

such an approach is the only one that provides detailed

information on sound perception (see Popper and

Hawkins, 2021). This also allows for examination of

important aspects of hearing such as masking, discrimina-

tion, and determination of sound source direction (e.g.,

localization).
• Studies should preferably be conducted at locations where

the sound and vibration field being tested can be carefully

and fully controlled (or at least fully characterized).
• Studies should focus on particle motion and vibration and

not just sound pressure (this may require use of a research

test site with instrumentation; Priority F, Sec. IV F).

Studies should also include invertebrates, including spe-

cies living in and on the sediment.
• Data should be collected on different developmental

stages, life history stages, and sexes (when sexing is pos-

sible), since there may be different responses among

groups.
• Methodologies should include an agreement on what con-

stitutes sensitivity (including consideration of background

noise as well as an appropriate metric) and biologically

significant change (which is important in a regulatory

context). Using multiple behavioral indices may help to

assess biologically significant responses.

F. Develop a long-term, highly instrumented field site

It is critical that the acoustic environment for studies of

sound in fishes and aquatic invertebrates be carefully

designed and/or measured so that the investigators under-

stand the precise sounds to which the animals respond.

Developing such an environment is complex, expensive,

and difficult, and cannot easily be done by a single investi-

gator or group. Therefore, there is great value in developing

one or more acoustically defined sites (e.g., where investi-

gators can understand and calibrate the preexisting sound

environment) that can be used by multiple investigators and

for different studies.

1. Goal

Develop a long-term, highly instrumented field research

site that can be worked at year-round, has well-defined

acoustics, and ideally allows: (1) control of the sounds being

added to the ambient soundscape; (2) tests on various

authentic substrates, focal species, etc.; (3) examination of

particle motion and substrate vibration (not just sound pres-

sure); and (4) behavioral and physiological response studies.

2. Potential methods

The proposed test site could be thought of as a Long-

Term Ecological Research (LTER) site for sound and acous-

tic equipment testing (Kratz et al., 2003). Hawkins and

Chapman (2020) discussed the establishment and operation

of an analogous field site at Loch Torridon, Scotland. It

would be important at such a site to carefully consider inclu-

sivity and accessibility for a wide range of researchers.

While an oceanic loch or fjord might provide the

combination of desired characteristics (e.g., Hawkins and

Chapman, 2020), a test site more representative of offshore

wind development locations would be desirable for purposes

of OSW-focused research. Using a site with actual turbines,

and where realistic pile-driving noise and vibrations could

be generated, could also be helpful, as this could allow the

study of other topics such as displacement at one site.

However, working at an actual OSW site could also cre-

ate substantial limitations in terms of allowing for long-term

instrumentation and control of the soundscape, and would

likely require considerable coordination with the OSW

developer in question during the project design process to

ensure adequate access to electrical power and other needs

for research equipment. Selection of an appropriate test site

would require careful consideration and should be driven by

the specific questions that are targeted for research.

G. Feasibility study to examine sound mitigation
options for fishes and invertebrates

OSW noise mitigation has focused heavily on marine

mammals (e.g., Verfuss et al., 2016; Verfuss et al., 2018;

Verfuss et al., 2019). It will, therefore, be important to

examine current mitigation strategies to determine if they

are protective of fishes and invertebrates, and then develop

mitigation that would be most effective. There is currently

no research on this topic that is known to us in relation to

fishes or invertebrates and OSW. Existing sound mitigation

methods designed for marine mammals (e.g., Duncan et al.,
2017; Bohne et al., 2019) may be ineffective for fishes and

invertebrates due to the frequencies at which these abate-

ment methods are most effective, the speed at which most

fishes and invertebrates move, and/or where in the environ-

ment such efforts are directed (Thomsen and Verfuss,

2019). Moreover, since many fishes and invertebrates live

close to the bottom, they may be affected by energy
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emanating from the substrate back into the water well

beyond the reach of any mitigation method (Popper and

Hastings, 2009).

1. Goal

(1) Characterize existing noise abatement and mitiga-

tion methods and explore which may potentially be effective

for fish and invertebrates, and (2) use these data to identify

mitigation options in case substantial impacts are detected.

Such a feasibility study could also help identify specific

gaps in knowledge that would need to be filled to develop

effective mitigation measures, including mitigation for sub-

strate vibration.

2. Potential methods

• In order to develop the most effective mitigation for fishes

(and likely invertebrates), more data are needed about

hearing and acoustic behavior of these animals (Priority

E, Sec. IV E; Popper et al., 2020). A gap analysis would

be helpful to focus research on signals that potentially

affect animals, and for which mitigation may be most

effective (see Normandeau, 2012; Hawkins et al., 2015).
• Development of criteria/thresholds for the onset of effects

from particle motion, similar to those for sound pressure

(Popper et al., 2014), could provide a basis for establish-

ment of possible mitigation approaches. OSW projects

may be a good opportunity to collect the particle motion

data needed to propose interim thresholds.
• While this topic was ranked lowest among the seven

short-term topics in the workgroup prioritization survey,

there was disagreement among workgroup members on its

final ranking. Many participants suggested this study is

important to begin now and to build from as more infor-

mation is available. It was also suggested that this would

be relatively simple to accomplish concurrently with other

listed priorities.

V. LONG-TERM PRIORITIES

The topics in this section were identified as priorities

during workgroup discussions but were determined not to be

immediate needs, due to either (1) requiring longer timelines

for completion (e.g., the recommended studies likely could

not be initiated within the next five years), or (2) being at

least partially addressed through existing research projects

under way. Topics are not listed in any particular order.

A. Ecological community alteration on and around
offshore wind farms

This may require longer-term studies, though changes

in communities can be seen in as little as two to three years

(e.g., Lindeboom et al., 2011; Dannheim et al., 2019). This

topic also potentially includes other types of effects besides

sound (e.g., reef effects; Degraer et al., 2020), as it may be

difficult to differentiate the primary drivers of animal dis-

placement/attraction if it occurs.

B. Prediction of cumulative impacts of operational
offshore wind facilities

It is important to try to understand the cumulative

impacts of many operational wind farms over a long period

of time, and how those effects might scale (e.g., are they

additive? Multiplicative?). However, this is a long-term con-

sideration that requires a range of additional research to be

conducted before it can be examined; it is not a specific

research question that is addressable with our current knowl-

edge base or in the short term. The identification of key

knowledge gaps and the standardization of data collection

methods (e.g., as outlined in the list of short-term priorities

identified above) are the first steps towards addressing this

need.

C. Development/adaptation of a cumulative impact
framework

Population Consequences of Disturbance (PCoD) or sim-

ilar frameworks may be suitable approaches for analyzing

long-term effects of OSW farm noise exposure to fishes (see

Pirotta et al., 2018; Slabbekoorn et al., 2019; Mortensen

et al., 2021). However, far more data on effects are needed

before such models can be applied, so this was judged to be a

longer-term goal (outside the five-year window).

D. Long-term intensive monitoring of sound
at an offshore wind development site

The BOEM RODEO project at the Block Island Wind

Farm (Rhode Island, U.S.) produced reports on pile driving

sound, operational sound, and particle motion (BOEM

RODEO), and a second RODEO project is planned, so this

was not identified as an unmet need. However, workgroup

members noted that long-term intensive monitoring sites in

Europe have greatly added to the knowledge base of OSW

effects on wildlife and have been an important supplement

to site-specific studies at individual wind farms (Beiersdorf

and Wollny-Goerke, 2014). As such, a longer-term intensive

monitoring effort at one or more sites outside of Europe

may still be of some utility.

VI. CONCLUSIONS

There are substantial gaps in our understanding of the

potential effects of sound (including sound pressure, particle

motion, and substrate vibration) on fishes and aquatic inver-

tebrates. These gaps currently preclude assessment of poten-

tial cumulative impacts of sound from OSW energy

development. There is also a dearth of data from field stud-

ies conducted under real-world conditions that examine

behavioral, physiological, and ecosystem effects of sound

that may have possible fitness consequences. It is suggested

that OSW-related sound research over the next five years

focus on filling some of the most critical gaps in knowledge,

as discussed in Sec. IV. This approach will most efficiently

improve our broad understanding of potential effects. In the

long term, the aim of such research should be to inform
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cumulative impact models, thereby substantially enhancing

our understanding of possible sound-related impacts of

OSW energy development to populations and ecosystems.
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