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Ecology, statistics, and the art of misdiagnosis:
The need for a paradigm shift

Joseph D. Germano

Abstract: This paper approaches ecological data analysis from a different vantage point and has implications for ecological
risk assessment. Despite all the advances in theoretical ecology over the past four decades and the huge amounts of data
that have been collected in various marine monitoring programs, we still do not know enough about how marine ecosystems
function to be able to make valid predictions of impacts before they occur, accurately assess ecosystem “health,” or perform
valid risk assessments. Comparisons are made among the fields of psychology, social science, and ecology in terms of the
applications of decision theory or approach to problem diagnosis. In all of these disciplines, researchers are dealing with
phenomena whose mechanisms are poorly understood. One of the biggest impediments to the interpretation of ecological data
and the advancement of our understanding about ecosystem function is the desire of marine scientists and policy regulators to
cling to the ritual of null hypothesis significance testing (NHST) with mechanical dichotomous decisions around a sacred 0.05
criterion. The paper is divided into three main sections: first, a brief overview of common misunderstandings about NHST;
second, why diagnosis of ecosystem health is and will be such a difficult task; and finally, some suggestions about alternative
approaches for ecologists to improve our “diagnostic accuracy” by taking heed of lessons learned in the fields of clinical
psychology and medical epidemiology.
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Résumé: Dans ce travail, l’auteur aborde l’analyse des données écologiques avec une perception différente ayant des
implications pour l’évaluation des risques environnmentaux. En dépit de tous les progrès de l’écologie théorique au cours
des quatre dernières décennies, et de l’imposante quantité de données qui ont été récoltées dans divers programmes de
suivi marin, nos connaissances sur le fonctionnement du milieu marin sont toujours insuffisantes pour permettre de faire
des prédictions valables sur les impacts avant qu’ils ne surviennent, pour évaluer avec précision l’« état de santé » des
écosystèmes, ou pour effectuer des évaluations de risques valides. L’auteur fait des comparaisons avec les domaines
de la psychologie, des sciences sociales et de l’écologie en termes d’applications de la théorie de la décision ou de
l’approche diagnostique des problèmes. Dans toutes ces disciplines, les chercheurs sont confrontés à des phénomènes
dont les mécanismes ne sont que partiellement compris. Une des plus grandes embûches dans l’interprétation des données
écologiques et l’avancement des connaissances sur le fonctionnement des écosystèmes prend racine dans la détermination des
scientifiques marins et des responsables des règlements de coller de façon rituelle au test de signification basé sur l’hypothèse
nulle (NHST), avec des décisions dichotomiques mécaniques autour du critère sacré de 0,05. Le travail comporte trois
sections principales: d’abord, une brève revue de mauvaises compréhensions communes au sujet du NHST; deuxièmement,
pourquoi le diagnostique de la santé des écosystèmes est et sera une tâche difficile; et finalement, quelques suggestions à
propos d’approches alternatives permettant aux écologistes d’améliorer la précision des diagnostiques, en prenant note des
leçons venant de champs d’activités tels que la psychologie clinique, et la médecine épidémiologique.

Mots clés :signification statistique, statistique bayésienne, évaluation de risques.

[Traduit par la Rédaction]

Introduction

The ideas in this paper are the result of more than 15 years of
working a wide variety of applied problems in marine ecology.
Most of the arguments to follow address marine environmen-
tal investigations as well as the emerging field of ecological
risk assessment from a new vantage point. However, many of
the ideas presented will be equally applicable to terrestrial or
freshwater ecology.

For most of my academic and professional career, I have
felt a vague discomfort that despite all the advances in theoreti-
cal ecology over the past four decades and the huge amounts of
data that have been collected in various regional marine moni-

toring programs, we still do not know enough about how marine
ecosystems function to be able to make valid predictions of im-
pacts before they occur, accurately assess ecosystem “health,”
or perform valid risk assessments. The current situation with
the decimation of commercial fishing stocks in the northwest
Atlantic on both Georges Banks and the Grand Banks is a good
example of our lack of knowledge or predictive power concern-
ing ecosystem dynamics. While repeated trips down well-worn
paths (e.g., collection and analysis of more benthic samples,
repeated bioassay tests with unknown relevance to actual field
impacts) may provide job security for those of us in the applied
side of the field, it has become increasingly difficult for me to
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recommend to clients that we should keep running down the
same blind alleys.

During the past eight years, most of the scientific papers
I have read have been from clinical psychology journals, and
they have served as a springboard for further readings in the
fields of statistics, decision theory, and expert judgment. I have
been struck by the similarity among the fields of psychology
and social science with the field of ecology in terms of the appli-
cations of decision theory or approach to problem diagnosis.
In both disciplines, researchers are dealing with phenomena
whose mechanisms are poorly understood. Just as there are
no hard and fast “laws of nature” in psychology or social sci-
ence, we are also a long way from understanding how marine
ecosystems function. It is just as difficult for a psychologist
or psychiatrist to predict the occurrence of mental disease or
diagnose character and personality disorders and for the clin-
ician to prescribe the most effective course of treatment as it
is for a marine scientist or risk assessor to predict when the
next algal bloom or red tide will occur or diagnose ecosystem
health and prescribe the most effective remediation technique.

With the recent advances in computer hardware and soft-
ware coupled with the wealth of on-line information available
on the Internet, ecologists now have easy access to large en-
vironmental databases with powerful workstations that will
provide the means for achieving new insights into ecosystem
structure and function (Germano, In press). However, fresh in-
sights will only come about if we are willing to change our ap-
proach to environmental data analysis and not just apply these
new tools as a way of doing the same old thing faster. Our cur-
rent ability to diagnose ecosystem health accurately or to make
valid predictions of recovery and (or) the effectiveness of al-
ternative remediation treatments ranges from being extremely
limited in many cases to nonexistent in others. Everyone will
freely admit that ecological systems are extremely complex,
and this simple statement has important implications for the
development of ecological indicators (Bernstein 1990); worth-
while indicators cannot be developed without a valid model or
thorough understanding of how ecosystems function. Psychol-
ogists have faced the same dilemma; people are complex, and
it is difficult to find universal principles of human behavior.
As Nunnally (1960) observed, this makes psychological re-
search difficult and frustrating, and often this frustration has
led to a “flight into statistics” (p. 649); the same can be said of
ecological research over the past three decades.

However, we ecologists would do well to take heed of
lessons learned in the fields of clinical psychology, decision
theory, and medical epidemiology to structure a new approach
to the design and interpretation of environmental monitoring
projects, ecological research programs, and the emerging field
of ecological risk assessment. While all of the arguments that
follow are subject to revisions by future comments, criticism,
and research, my main thesis is that we need to take a radically
different approach to the interpretation of ecological data than
those commonly employed today if we are to make any ad-
vances in our understanding of ecosystems and our ability to
predict the impacts of our activities (and thereby have environ-

mental regulations that are both protective and sensible). The
majority of the ideas I will be presenting on expert judgment
and statistical inference are hardly original. However, the bulk
of the material exists in journals that few marine scientists or
ecologists normally read. While it was a little embarrassing for
me to discover that most of the articles that provided these in-
sights were published 10–20 years before I even entered grad-
uate school in the mid-1970s, I was not exposed to them during
my academic or ensuing professional career, so I would not be
surprised if some of the ideas appear as “new information” to
other scientists and environmental policy regulators.

One of the biggest impediments to the interpretation of eco-
logical data and the advancement of our understanding about
ecosystem function is the desire of marine scientists (biolo-
gists, ecologists, chemists, toxicologists, etc.) and policy regu-
lators to cling to the ritual of null hypothesis significance test-
ing (NHST) with mechanical dichotomous decisions around
a sacred 0.05 criterion. The continued blind application and
misinterpretation of the “Fisherian” school of statistics (which
all of us were taught in graduate school) appears to have stifled
or limited our understanding of complex systems; psycholo-
gists and social scientists recognized these limitations years
ago (e.g., Bakan 1966; Berkson 1938; Carver 1978; Lykken
1968; Meehl 1967; Rozeboom 1960), but few marine ecolo-
gists are aware of them. Many of the ideas I will present on the
misapplication of NHST may either touch a few nerves or will
be “what everyone knows.” As Bakan (1966) stated so aptly
in his wonderful review of the crisis of statistical testing in
psychological research,

To say it ‘out loud’ is, as it were, to assume the role
of the child who pointed out that the emperor was
really outfitted only in his underwear (p. 423).

This paper is not intended as a blanket criticism of ecology,
statistics, or the test of significance when it can be appropri-
ately used (which I have come to think of as a rare rather than
routine situation). The real problem is when ecologists or regu-
lators use NHST or just statistical significance to carry most of
the burden of scientific inference; we need better approaches
to both ecosystem diagnosis and the prediction of effective re-
mediation alternatives for more realistic risk assessment stud-
ies. Most ecologists suffer from what Gould (1981) coined as
“physics envy”; hence, the need to use numbers, multivariate
statistics (the more complicated, the better!), and computers
to convey the impression that indeed some hard science in-
stead of qualitative or subjective judgment is being carried out
(witness the continued practice of marine benthic ecologists
calculating diversity indices from benthic data sets, a tribal rit-
ual of data-processing handed down to successive cohorts in
graduate school for the last three decades).

Suggesting alternative approaches to NHST is not an al-
together novel concept for ecology and risk assessors (e.g.,
Reckhow and Chapra 1983; Reckhow 1990; Crane and New-
man 1996; Hill 1996); however, the information about the prob-
lems with NHST as well as reasons for considering alternative
approaches are scattered throughout a wide variety of journals.
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Even though some ecologists are well aware of these problems,
a large number of policy regulators, applied scientists (e.g.,
consultants), and graduate students are not; misunderstand-
ings about what statistical significance testing can and cannot
do are still widespread. As Stearns (1976) did with life-history
tactics, I have attempted to organize a large body of literature
and write the paper that I wanted to read, but could not find,
when I started out on this path. The paper is divided into three
main sections: first, a brief overview of common misunder-
standings about NHST; second, why diagnosis of ecosystem
health is and will be such a difficult task; and finally, some sug-
gestions about alternative approaches for ecologists to improve
our “diagnostic accuracy.”

Part 1: Some common misconceptions
about statistical significance

The aim of any test of significance is to obtain information
concerning a characteristic of apopulationthat is not observ-
able directly (whether for practical or intrinsic reasons); what
is observable is thesample. If the actual population values
could be measured, there would be no need to do any statisti-
cal tests; we could simply measure the parameter of interest,
make a comparison, and immediately know the answer. The
test of significance is supposed to aid the researcher in making
inferences from the observed sample to the unobserved popula-
tion. The critical assumption involved in significance testing is
that if the experiment or measurements are conducted properly,
thenthe characteristics of the population will have a determi-
native influence on the samples drawn from it; for example,
the mean of a population has a determinative influence on the
mean of a sample drawn from it. Therefore, ifP , the popu-
lation characteristic, has a determinative influence onS, the
sample characteristic, then there is some justification for the
researcher to make inferences fromS to P (Bakan 1966).

The literature on the misapplication of statistical signifi-
cance and misunderstandings about NHST in the field of psy-
chology is rich (e.g., Bakan 1966; Lykken 1968; Morrison and
Henkel 1970; Carver 1978; Cohen 1994, and all the references
cited in these publications); I would encourage the reader to
consult these for more details if the overview presented be-
low whets your appetite. While Bakan (1966) claimed that his
chastisement of statistical significance “is hardly original” and
compared it to the naked emperor of childhood fables, Cohen
(1994) pointed out almost 30 years later that despite all prior
published warnings, “this naked emperor has been shamelessly
running around for a long time.” (p. 997).

If these ideas were not original three decades ago, I cer-
tainly cannot claim any originality for them now, and it is
equally sobering to read psychological literature 20–30 years
after these convincing arguments were initially published and
realize that the problems with NHST are still running rampant
in this field where investigators are at least informed and aware
they exist. While I have no illusions that making marine ecol-
ogists aware of the problems with NHST are going to cause
an instant 180◦ change in their approach to monitoring design

or data interpretation, an awareness of and admission that the
problem even exists is the first step towards change. Also, it is
important to keep in mind that statistical significance testing
can involve more than one procedure because it has evolved
from more than one source (Clark 1963); unfortunately, most
introductory statistics texts (and hence most marine scientists)
are confined to one procedure. So, with these disclaimers in
mind, what exactly are the problems with NHST? I think they
can be grouped under four main headings.

Problem 1: The illusion of attaining improbability

The main problem, simply stated, is that statistical signif-
icance does not tell us what we want to know; however, be-
cause we are desperately trying to find out or prove what we
want to know, we either ignore or misunderstand what NHST
does and think it is telling us exactly what we want. What we
are constantly trying to find out either through our research
or monitoring studies is, “Given these data, is my research hy-
pothesis (H1) true?” Most of us will recall that thepvalue from
a statistical test (such as thet test orF test) is aprobability or
proportionof the time we can expect to find mean differences
as large as or larger than the particular sized difference we get
when we are sampling from the same population assumed un-
der the null hypothesis. So, to rephrase our initial underlying
desire, what we would like to know as a result of our statistical
significance test is, “Given these data, what is the probability
that my research hypothesis (H1) is true?” In our more sophis-
ticated moments, we may realize that the statistical tests we
are performing are testing the null hypothesis (H0), so we may
unconsciously think thepvalue is telling us, “Given these data,
what is the probability that the null hypothesis (H0) is true?”
However, what thep value is telling us (which many investiga-
tors can correctly indicate if asked directly, even though they
are misinterpreting NHST) is, “Given thatH0 is true, what is
the probability of these (or more extreme) data?” These four
statements:

1. Given these data, is my research hypothesis (H1) true?

2. Given these data, what is the probability that my research
hypothesis (H1) is true?

3. Given these data, what is the probability that the null
hypothesis (H0) is true?

4. Given that the null hypothesis (H0) is true, what is the
probability of these (or more extreme) data?

arenot equivalent, as has been pointed out many times over
the years by the investigators cited at the beginning of this
section, andall that thep value indicates from NHST is the
fourth statement. The implications of an investigator designing
experiments or interpreting data while confusing these four are
not trivial. Statistical significance (our convention ofp ≤ 0.05)
simply means statistical rareness (Carver 1978). Results are
considered “significant” because they would occur rarely in
random sampling from a population under the conditions of
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the null hypothesis. In other words, a statistically significant
result means the probability is low we would get the result
obtainedgiven that the null hypothesis is true(Statement 4).

Given this stark reality, statistical significance, by itself,
means little or nothing; as Carver (1978) pointed out in his ex-
cellent review article, the real problems occur when it is used
to make inferences (a trend all too common these days in the
world of environmental data interpretation, e.g., in the search
for sediment quality criteria). The important contribution that
Fisher made in his approach of statistical significance and null
hypothesis rejection is that he recognized that it is rarely mean-
ingful to set up any simple “P impliesS” model for param-
eters in which we are interested. In the case of the mean, for
example, it is rather thatP has a determinative influence on
the frequencyof any specificS. However, one experiment or
measurement does not provide many values ofS to study the
frequency, it only givesonevalue ofS. Thesampling distri-
butionis conceived, which specifies the relative frequencies of
all possible values ofS; then, with the help of an adopted level
of significance, we can, in effect, say thatS was false. That is,
anyS that fell in a region whose relative theoretical frequency
under the null hypothesis was 5% would beconsideredfalse.
IT IS IMPORTANT TO RECOGNIZE that one oftheessen-
tial features of the Fisher approach is what could be termed
the “once-ness” of the experiment; Fisher’s inference model
takes as critical that the experiment or measurement has been
conductedonce. If anS, which has a low probability under the
null hypothesis actually occurs, it is taken that the null hypoth-
esis is false. As Fisher himself put it (1947, p. 14), why should
the theoretically rare event under the null hypothesis actually
occur to “us”? If it does, we take it that the null hypothesis is
false. Basic to this is the idea that “the theoretically unusual
does not happen to me” (Bakan 1966).

Cohen (1994) pointed out that a basic major problem of
NHST arises from a misapplication of deductive syllogistic
reasoning, or the “illusion of attaining improbability.” The ar-
guments of deductive reasoning below are taken from Cohen’s
(1994) paper and are a somewhat different presentation of the
four statements above by their syllogistic derivatives. The fol-
lowing construct mimics the reasoning of the null hypothesis
rejection:

Syllogism Type A: (direct or absolute logical implication)

If the null hypothesis is correct, then this datum
(D) cannot occur.

It has, however, occurred.

Therefore, the null hypothesis is false. (Cohen
1994; p. 998)

If this were the only reasoning that investigators used to in-
terpretH0 testing, then it would be formally correct. This is
an excellent example of what in Aristotelian logic is called a
modus tollens, where the denial of the antecedent is derived
from a denial of the consequent. What NHST does is to make
the reasoning of denial probabilistic, as follows:

Syllogism Type B: (probabilistic logical implication)

If the null hypothesis is correct, then these data
are highly unlikely.

These data have occurred.

Therefore, the null hypothesis is highly unlikely.
(Cohen 1994; p. 998)

The real crux of the problem is that by making it probabilistic,
the reasoning becomes invalid. Cohen (1994) delightfully il-
lustrated this point by providing the following syllogisms with
formally correctmodus tollens(this is another example of Syl-
logism Type A, based on what is hopefully a correct initial
premise):

If a person is a Martian, then he is not a member
of Congress.

This person is a member of Congress

Therefore, he is not a Martian.

While this may sound reasonable, the following syllogism is
also a direct or absolute logical implication, but is not rea-
sonable because the major premise is wrong. However, the
reasoning is the same as before and is still a formally correct
modus tollens(Syllogism Type A, wrong initial premise):

If a person is anAmerican, then he is not a member
of Congress (WRONG! )

This person is a member of Congress.

Therefore, he is not an American.

Now, if we make the major premise reasonable by changing it
from being a direct or absolute logical implication to a prob-
abilistic one, then the syllogism becomes formally incorrect
and leads to a conclusion that is not sensible (Syllogism Type
B, correct initial premise):

If a person is anAmerican, then he is probably not
a member of Congress.

This person is a member of Congress.

Therefore, he is probably not an American. (Pol-
lard and Richardson 1987).

This is the same syllogistic construct as:

If H0 is true, then this result (statistical signifi-
cance) would probably not occur.

This result has occurred.

Therefore,H0 is probably not true and so is re-
jected.

The difference in these syllogistic constructs is illustrated in
Fig. 1. Syllogism Type A leads to a correct conclusion because
the two parts of the initial premise are separate sets and do
not overlap. Syllogism Type B leads to an incorrect conclusion
because the two sets of the initial premisedo overlap (one is
the subset of the other), therefore the denial of the consequent
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Fig. 1. Venn diagram of a correct (Type A) and incorrect (Type
B) modus tollens.

does not equate to the denial of the antecedent. This “illusion of
attaining improbability” is used in countless ecological journal
articles; is the basis for the testing criteria in the U.S. Army
Corps of Engineers and EPA’s “Green book” (USEPA/USACE
1991) and “Inland testing manual” (USEPA/USACE 1998) for
dredged material acceptability; and is also explicitly stated in
many statistics textbooks. While this faulty reasoning is the un-
derlying foundation for many a misinterpretation of the mean-
ing of statistical significance, it unfortunately is only one of
four major problems.

Problem 2: The “odds against chance” fantasy
Another common misinterpretation of thep value is seeing

it as the probability that the research results were due to or
caused by chance (Carver 1978). As mentioned previously, the
p value is the probability of getting the research results when it
is based on a probability of 1.00 that chancedidcause the mean
difference; these are not equivalent ideas. In a two-samplet test,
a p value of 0.05 means that the odds are 1 in 20 of getting a
mean difference this large or larger, and the odds are 19 in 20
of getting a mean difference this large or smallerif and only
if the two samples are from the same population. We do not
know how to estimate the odds that the null hypothesis is true,
i.e., that the two samplesare from the same population; the
p values presented in statistical tables (e.g., Rohlf and Sokal
1969) are calculated based on a probability of 1.00 that the null
hypothesisis true.

This is rather absurd if one takes the time to step back and
think about it, because most researchers design experiments
(monitoring programs, etc.) or use statistical tests to prove their
research hypothesis, not the null hypothesis. As Edwards et al.
(1963) point out, “in typical applications, one of the hypotheses
— the null hypothesis — is known by all concerned to be false
from the outset” (p. 214). This is one way of stating the “odds
against chance” fantasy.

Cronbach and Snow (1977) present this odds against chance
fantasy in terms of probability statements (which is a more use-

ful framework for both discussing statistical results and view-
ing environmental data, and one that needs to become part of
the normal landscape for environmental scientists):

A p value reached by classical methods is not a
summary of the data. Nor does thep value at-
tached to a result tell how strong or dependable
the particular result is... Writers and readers are
all too likely to read 0.05 asp(H | E), “the
probability that theHypothesis is true, given the
Evidence.” As textbooks on statistics reiterate al-
most in vain,p is (E | H ), the probability that
thisEvidence would arise if the [null] hypothesis
is true. Only Bayesian statistics yield statements
aboutp(H | E) (p. 52).

This is without a doubt the most important and least understood
principle of statistical significance testing. Carver (1978) used
a wonderful example to drive this point home, which I want to
repeat here:

What is the probability of obtaining a dead per-
son (label this partD) given that the person was
hanged (label this partH); that is, in symbol form,
what isp( D|H)? Obviously, it will be very high,
perhaps 0.97 or higher. Now, let us reverse the
question. What is the probability that a person has
been hanged (H) given that the person is dead
(D); that is, what isp(H|D)? This time the proba-
bility will undoubtedly be very low, perhaps 0.01
or lower. No one would be likely to make the mis-
take of substituting the first estimate (0.97) for the
second (0.01); that is, to accept 0.97 as the prob-
ability that a person has been hanged given that
the person is dead. Even though this seems to be
an unlikely mistake, it is exactly the kind of mis-
take that is made with interpretations of statistical
significance testing — by analogy, calculated es-
timates ofp(H|D) are interpreted as if they were
estimates ofp(D|H), when they are clearly not the
same.

In statistical significance testing, we ask: what is
the probability of obtaining a large mean differ-
ence (label thisD′) between two samples, if the
two samples were obtained from the same popula-
tions (label thisH0, the usual symbol for the null
hypothesis); that is, what isp(D′ | H0)?... If we
reverse the question to ask what is the probability
that the two obtained groups were sampled from
the same populations, we have the question that
most people want to answer and assume they have
answered when they calculate thep value from
statistical significance testing. In essence, they are
asking what the probability is that the null hypoth-
esis,H0, is true, given the type of large mean dif-
ference we have obtained, or, what isp(H0 |D′)?
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Thep value that was obtained from statistical sig-
nificance testing, for example,p(D′| H0) = 0.05,
is used as an answer to the reverse question as well.
This is a fantasy, however, because thep value
that results from statistical significance testing is
p(D′| H0), notp(H0 |D′) (pp. 384–385).

Going back to the four statements posed in the beginning of this
section under Problem 1, the “odds against chance” fantasy is
the belief that Statement 3≡Statement 4, a mistake that readers
of this article hopefully will no longer make.

Problem 3. The fantasy ofp as an indicator of research
hypothesis validity

To twist Carver’s (1978) above statement a little further,
I would contend that most investigators interpret thep value
in statistical significance testing as an indicator that their re-
search hypothesis (H1) is true; instead of making the mistake
of thinking p(H0 |D′) is equivalent top(D′| H0), they inter-
pret p(D′| H0) as equivalent top(H1 |D′) (again, referring
back to the four initial statements in problem one, the mistake
under this fantasy is that Statement 1≡ Statement 4). Those
who succumb to this mistake also are likely to interpret the size
of the p value as a reflection of the degree of the validity of
the research hypothesis (or, the lower thep value, the “more
highly significant” or “more valid” the research hypothesis is).

This point was illustrated to me a few years ago during an
in-house seminar when my colleagues and I were discussing
the findings from one of our monitoring cruises to study the
impacts of open-water dredged material disposal. One of the
staff scientists was presenting the results of sediment contam-
inant measurements obtained at a disposal mound with those
at the reference stations; the results of the statistical test that
was performed showed that one of the contaminants of inter-
est was significantly different but not in the expected direction
(i.e., the reference areas had higher concentrations than the
disposal mound). Someone then asked, “Well, what was the
p value? How significant was it? Was it just near 0.05 or was
it really significant?” His comment reflected his interpretation
that the size of thep value indicated the degree of validity of
the research hypothesis, i.e., the lower thep value, such as
p ≤ 0.001, the more highly significant or valid the research
hypothesis. At this point, I hope it is painfully clear that statis-
tical significance doesnot reflect anything directly about the
validity of the research hypothesis. Even if the null hypothesis
can be rejected (and it always can, if a sufficient number of
samples are taken), there is almost always more than one al-
ternative hypotheses to be evaluated (who knows, one of them
may even be your research hypothesis). Only after a thorough
design and very rigorous theorizing (e.g., Platt 1964; Germano
et al. 1994) along with multiple replications of the measure-
ments in a variety of different settings can one say anything
about the probability of the research hypothesis being true.

Problem 4. The fantasy of replicability or reliability
Similar to general theories about disturbance or succes-

sion in ecology or the relationship of sediment contaminant
concentrations to organic carbon content (for hydrocarbons)
or acid-volatile sulphides (for metals) in toxicology, most the-
ories in psychology predict no more than the direction of a cor-
relation, group difference, or treatment effect. The final major
problem with the misinterpretation of NHST is another com-
mon misconception that the complement of thep value gives
some indication of the replicability (R) of the results, i.e., if
p = 0.05, then 1− p or 0.95 is the probability that the same
mean difference would be repeated should the measurements
or experiment be repeated. Again, the mistake here is think-
ing p(R |D′), the probability that the results are replicable or
reliable, is equivalent top(D′| H0). Bakan (1966) noted this
error almost 30 years ago, and Lykken (1968) elaborated much
further on this idea two years later when he pointed out that if
statistical significance is used as a demonstration of “some em-
pirical fact,” then associated with this is a claim or confidence
in the replicability of one’s findings. Carver (1978) points out
that there is nothing in the logic of statistics to allow a statisti-
cally significant result to be interpreted as any reflection of the
probability of the result being replicated.

Lykken (1968) presents a detailed discussion of the re-
lationship of statistical significance to the probability of a
“successful” replication by distinguishing between three rather
different methods of replication (literal, operational, and con-
structive replication). Literal replication is just what it sounds
like, an exactduplication of everything, which realistically
rarely happens; the closest one can come is asking the original
investigator to simply run more subjects. Operational replica-
tion involves another investigator using the same “experimen-
tal recipe” by using conditions and procedures published in the
“Methods” section of a journal article to see if similar results
can be obtained. Constructive replication is where one delib-
erately avoids imitation of the first author’s methods and has
nothing more than a clear statement of the empirical “fact” that
the first author claims to have established; the second investi-
gator formulates their own method of sampling, measurement,
data analysis, etc. to confirm this previously established “fact.”
The probability of replication decreases drastically as one goes
from literal to operational to constructive replication; Lykken
points out that because the null hypothesis is never strictly
true, predictions about the direction of a correlation or treat-
ment effect (e.g., the contaminant levels in the sediment will
cause mortality or “adverse effects” on the population in the
natural environment) have about a 50–50 chance of being con-
firmed even if our original theory is false, because statistical
significance is merely a function of sample size.

Tversky and Kahneman (1971) classify this fantasy as a dis-
tortion on the law of large numbers (that very large samples will
indeed be highly representative of the population from which
they are drawn) and relabel it as a misappropriated belief in a
supposed “law of small numbers.” They contend (and my expe-
rience after 20 years in applied monitoring also confirms) that
most investigators view a sample randomly drawn from a pop-
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ulation as highly representative (i.e., similar to the population
in all essential characteristics), so that any two samples drawn
from a particular population would be more similar to one an-
other (and to the population) than sampling theory predicts for
small numbers.As an example, Tversky and Kahneman (1971)
cite the results of a questionnaire they distributed at a meeting
of the Mathematical Psychology Group of the American Psy-
chological Association where they have described the findings
of an experiment with 20 subjects having a significant result
(p < 0.05) “which confirms your theory” (a statement which I
hope the reader by now would recognize as more than a little
misleading). They asked the respondents what the probability
would be of getting significant results if another 10 subjects
were run; most people thought the probability is somewhere
around 0.85, when in fact it is around 0.48. Their basic premise
is that most people have strong intuitions about random sam-
pling, most of which are wrong (e.g., the common “gambler’s
fallacy” that deviations in one direction from the expected 0.5
of a random coin toss will soon be canceled by a correspond-
ing deviation in the other direction), and that these are applied
with unfortunate consequences to scientific investigations.

It is important to remember that the laws of chance are
not an active, self-correcting process; deviations from a pre-
dicted outcome such as the expected 0.5 probability of getting
a “heads” in a coin toss are not canceled as sampling proceeds,
they are merely diluted. Tversky and Kahneman (1971) drive
this home by the following illustrative example: the mean IQ
of a population of eighth graders in a city isknownto be 100;
you select a random sample of 50 children, and the first child
tested has an IQ of 150. What do you expect the mean IQ to be
for the sample? A surprisingly large number of people believe
that the expected IQ for the sample will be 100, based on the
misbelief that a random process is self-correcting, when the
correct answer is 101.

Tversky and Kahneman (1971) characterize the believers
in the law of small numbers as investigators who

• gamble their research hypotheses on small samples with-
out realizing the odds against them are unreasonably
high; they overestimate power.

• have undue confidence in early trends and the stability
of observed patterns (e.g., the number and identity of
significant results); they overestimate significance.

• have unreasonably high expectations about the repli-
cability of significant results; they underestimate the
breadth of confidence intervals.

• rarely attribute a deviation of results from expectations
to sampling variability, because they will find a causal
“explanation” for any discrepancy; they rarely recognize
sampling variation in action (Tversky and Kahneman
1971, p. 109).

Hence, their belief in the law of small numbers will always
remain intact and continue to be the distorted lens through

which they see the implications of their experimental results.
A true believer, as Tversky and Kahneman (1971) point out,

commits his multitude of sins against the logic
of statistical inference in good faith...Thus, while
the hasty rejection of the null hypothesis is grat-
ifying, the rejection of a cherished hypothesis is
aggravating, the true believer is subject to both.
His intuitive expectations are governed by a con-
sistent misperception of the world rather than by
opportunistic wishful thinking (p. 110).

It is a fantasy to believe that statistical significance reflects
anything about the degree of confidence in the replicability
or reliability of results, i.e., thatp(R |D′) is equivalent to
p(D′ | H0).

Part 1: Summary

The fantasies about statistical significance or obtaining a
p value of 0.05 or less fall into four categories.

1. The illusion of attaining improbability, or thinking that
denying a correct, probabilistic initial premise will result
in a sensible conclusion.

2. The odds-against-chance fantasy, thinking that thepvalue
is the probability that the results were caused by chance
or that 1− p represents the probability that the results
were not caused by chance.

3. The fantasy of research hypothesis validity, that obtain-
ing a p value of 0.05 or less says something about
the research hypothesis instead of something about the
rareness of the data given that the null hypothesis is true.

4. The fantasy of replicability, that obtaining ap value of
0.05 means that we can be 95% confident that the re-
sults are “reliable” or that the probability is 0.95 that the
results will replicate.

Properly interpreted, the results of NHST give ap value that
reflects the probability of obtaining mean differences of a given
size under the null hypothesis (assuming it is true); thep value
may be used to make a decision about accepting or rejecting
the idea that chance caused the results. This is what statistical
significance testing is — nothing more, nothing less (Carver
1978).

A wide variety of investigators (e.g., Edwards et al. 1963;
Bakan 1966; Morrison and Henkel 1970; Cohen 1994) have
emphasized repeatedly the unlikelihood of a null hypothesis
ever being true in any population in nature. Why would we
expect sediment contaminant levels at a dredged material dis-
posal site to be the same as at the reference area any more
than an educational researcher would expect all scores on a
reading test from a fourth grade class in an economically de-
pressed inner-city school to be the same as those from a fourth
grade class in an economically privileged suburban Montessori
school? Why should any correlation coefficient beexactly0.00
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in any natural population (the assumption on which allpvalues
are calculated in statistical tables)? As Bakan (1966) pointed
out, a quick glance at any set of statistics on total populations
will quickly confirm the rarity of the null hypothesis in nature.
In fact, in more cases than not, the issue that environmental
investigators should be concerned with is not a Type I (α; false
positive) but a Type II (β; false negative) error. If the null hy-
pothesis is ever true, the probability of a statistical conclusion
error is held to 5% by the convention ofα = 0.05. However,
when the null hypothesis is false, the probability of error is
β, andβ can be quite large. It is sobering to realize that the
probability of an erroneous conclusion in a statistical analysis
is notnecessarily limited to 0.05, but may easily range as high
as 0.85 or more (Cohen 1962; Lipsey 1990; Germano 1991).
Most investigators fail to keep in mind that the total probability
of error in any experimental study iseither α or β, not both
or some combination of the two (Lipsey 1990). Low power is
an all too common feature of many ecological and sediment
and (or) water bioassay test results (Crane and Newman 1996;
Forbes and Forbes 1994; Toft and Shea 1983), and the potential
costs of Type II errors in these results on which environmental
regulations are based can be substantially more serious than
those from Type I errors (M’Gonigle et al. 1994).

Neyman and Pearson (1933) categorized the rejection of
the null hypothesis in their seminal theoretical work as a func-
tion of five factors:

1. whether the test is one- or two-tailed (choice of investi-
gator)

2. the standard deviation (a given of any particular situa-
tion)

3. the level of significance (choice of investigator, but a
social norm of 0.05 is common in most scientific fields)

4. the amount of deviation from the null hypothesis (this is
always unknown, but no matter how small, most likely
always exists)

5. the number of observations (choice of investigator).

It is the dependency on this last factor that is the ultimate weak
link; as Nunnally (1960) put it so aptly:

...if the null hypothesis is not rejected, it is usually
becauseN is too small. If enough data are gath-
ered, the hypothesis will generally be rejected. If
rejection of the null hypothesis were the real inten-
tion in psychological experiments, there usually
would be no need to gather data. (p. 643).

Berkson (1938) made the same observation almost 60 years
ago when he stated,

...we have something here that is apt to trouble
the conscience of a reflective statistician using the
chi-square test. For I suppose it would be agreed
by statisticians that a large sample is always better

than a small sample. If, then, we know in advance
theP that will result from an application of a chi-
square test to a large sample, there would seem to
be no use in doing it on a smaller one. But since
the result of the former test is known, it is no test
at all (p. 527).

Hays (1963) emphasized the same point by stating, “Virtually
any study can be made to show significant results if one uses
enough subjects regardless of how nonsensical the content may
be” (p. 326). Because one can always guarantee statistical sig-
nificance by having a sample size large enough (regardless of
the common misinterpretations of what thep value actually
means), this is the ultimate irony for the unaware researcher
(consultant, lawyer, regulator, etc.). Tyler (1931) made the im-
portant point that a statistically significant difference is not
necessarily an important difference (a small mean difference
from a research standpoint can be made statistically signifi-
cant just by taking enough samples), and a difference that is
not statistically significant may be an ecologically or scien-
tifically important difference. However, witness our current
practice based on our inability to interpret contaminant levels
in invertebrate tissues; the common practice is to take samples
from our area of concern (impact site) and at a “reference”
area(s) and statistically compare the differences (often with no
regard to the power of the statistical test, given the expense of
individual sample analysis). If the difference is “statistically
significant,” then it is deemed that an adverse environmental
impact has occurred.

When trying to reflect why we as scientists are so willingly
blinded by what statistical significance testing can and can-
not do, I feel that Bakan (1966) was correct by pointing out
that making inductive generalizations is always risky (imagine
the embarrassment and ridicule if we are proven wrong!). The
reasons psychologists (and I think the same is true for ecol-
ogists) latched onto statistical significance testing so strongly
are three-fold: because of the frustrations of dealing with such
a complex subject (Nunnally 1960), the unconscious “physics-
envy” pointed out in the beginning of this paper, and the ap-
parent result of what “running the tests” that all of us were
taught in our introductory cookbook statistics courses would
provide, i.e., we would no longer have to engage in the dan-
gerous business of making inferences ourselves, but we would
let the statistical tests be our analytic analogues of inductive
inference. By doing this, it would remove the burden of re-
sponsibility and the chance of being wrong from the shoulders
of the investigator and place it on the test of significance. Two
important goals are achieved by placing the contingency of
conclusion on thep < 0.05 level of statistical significance.

1. There is an implied social agreement that 5% is good
(e.g., see Cowles and Davis 1982), and 1% is even better.

2. By not making individual decisions about the level of
significance, the investigator only has to report thep
value as a “result” (and therefore a presumably “ob-
jective” measure of the degree of confidence in these
results) (Bakan 1966).
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Of course, the minor side issue as Bakan (1966) also pointed
out is the stark reality that getting a statistically significant re-
sult is wholly contingent upon the number of observations; this
has always been handled largely by ignoring this one crucial
fact, because it does have the disconcerting effect of trivializing
the results of most studies.

It is more than sobering for us as ecologists to step back
and reflect on the tortuous tangents and side paths that misun-
derstandings about NHST have led us over during the last four
decades; while we can take comfort that we are not alone in
our mistakes (indeed, the bulk of psychological and social sci-
ence research show as much blind faith in ritualistic worship
in the temple ofp < 0.05), it is no excuse to continue the bad
practice. Testing for statistical significance imparts an illusion
of objectivity that simply does not exist; we would gain more
insights from our data by abandoning the practice altogether,
because the disadvantages consistently outweigh the advan-
tages. Howson and Urbach (1991) pulled no punches when
they stated, “Corroborating a hypothesis does not strengthen
it, a significant result has no significance for the truth of the null
hypothesis, and a 95 per cent confidence interval has no right to
impart confidence, let alone 95 per cent’s worth, to an estimate”
(p. 373). Given our lack of predictive insight in ecology after
more than four decades of repeated reliance on statistical sig-
nificance, I find it hard to advocate continued use of techniques
that give the impression of “hard science” in action but cannot
really help investigators convert the ever-burgeoning amount
of data that is accumulating into information or insight. There
are alternative avenues available that can offer us new insights
and provide a synthetic framework to allow accurate diagnosis
of ecosystem health, validate predictive models, or assess the
effectiveness of remediation measures; these will be presented
in the sections that follow.

Part 2: The difficult task of accurate
diagnosis of ecosystem health

As ecologists or consultants, scientists are often called
upon to diagnose conditions of ecosystem health (e.g., Envi-
ronmental Impact Report/Environmental Impact Assessment
(EIR/EIA)) or make predictions about planned anthropogenic
impacts (e.g., the Environmental Impact Statement (EIS) merry-
go-round) or remediation effectiveness (Remedial Investiga-
tion/Feasibility Study (RI/FS)). To do this, they perform two
basic functions: specify and (or) collect what they feel (or regu-
lations stipulate) are the required data, and then interpret these
data. There are a host of excellent references to help with the
former (e.g., Green 1979, 1984; Eberhardt and Thomas 1991;
Rose and Smith 1992); my interest is the diagnosis or inter-
pretive function. It is in this area of ecosystem health “diagno-
sis” where we can benefit most from the experience gained in
the fields of medical epidemiology and clinical psychology; if
ecologists pay attention to the lessons learned in the areas of
decision making and expert judgment in these fields, we can
save ourselves a few decades of reinventing the wheel or from
making the same mistakes they have committed.

Fig. 2. Prototype diagnostic model (human medical analogues in
parentheses).

ENVIRONMENTAL CONDITION
(Outcome)

MEASURED X Not X

VARIABLE Present A B

(Symptom S) Absent C D

Bernstein’s (1990) quote of von Forster’s comment is par-
ticularly relevant here: the “hard” sciences deal with the soft
or easy problems, and the “softer” sciences, such as ecology,
with the truly hard problems. As with a psychiatric or medi-
cal diagnosis, an ecologist is faced with a wealth of potential
information about their patient or ecosystem. It is the job of
the “expert” to decide what information is the most relevant,
how to obtain it, how to integrate what is obtained, and how to
relate it to what are often nebulous and ill-defined categories
(Faust 1986b). As with the first section of this paper, I would
refer the reader to the source articles on this subject for more
details (e.g., Meehl 1954; Wiggins 1973, 1981; Arkes 1981;
Faust 1984, 1986a, 1986b, 1989; Dawes et al. 1989, and ref-
erences contained therein); once again, I will just present an
overview of some of the more than sobering highlights from
these studies.

Problem 1: The misestimation of covariation

The first and probably the most serious impediment for
a marine scientist or ecologist in achieving a high diagnostic
accuracy about ecosystem “health” is the inability to assess
covariation accurately (Arkes 1981). The prototype diagnostic
situation for a medical health model shown in Fig. 2 also is
equally relevant for assessing any predictor of environmental
disease or health (or the validity of an ecological indicator).

This 2× 2 contingency matrix depicts the prototype situa-
tion for both a clinician assessing the relevance of a symptom
for a predicted outcome and for a scientist exploring whether
or not their new measured variable is a useful predictor of
an environmental condition. The clinical psychologist, after
testing a patient, may ask, “Is this profile on the Minnesota
Multiphasic Personality Inventory diagnostic of an impending
psychotic break?” just as the environmental scientist or policy
regulator may ask after testing a particular sediment sample,
“Does this amphipod bioassay validly predict adverse toxicity
or harm to the community in the field?” (e.g., Spies 1989) or,
to hit close to home, “Does the presence of this feeding void
in a sediment profile image accurately predict the presence of
a deposit feeding community?” (Rhoads and Germano 1982,
1986).

The transition from the medical model to the ecological
model is quite easy: a clinician will note that some people have
Symptom S while others do not. The clinician then attempts to
determine if the presence of that particular symptom is diag-
nostic of some disease or future outcome. Past research in the
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Fig. 3. Hypothetical data set from REMOTSr surveys.

HYPOXIC OR ANOXIC WATERS

IMAGED YES NO

METHANE IN Present 12 6

SEDIMENT Absent 4 2

field of psychology (e.g., Smedslund 1963; Arkes and Hark-
ness 1980; Arkes 1981) has shown that most people base their
assessment of covariation largely on the number of instances
in Cell A; when I thought about some of the conclusions I have
made in the past about ecosystem function or about some of
the things I have read in the literature, I realized that ecologists
are no different from medical clinicians. I will use a variation
on an example Arkes (1981) presented to illustrate this point.
I have given talks on this topic at a variety of meetings and
presented the following hypothetical situation to a number of
audiences using a variable I am used to working with in sed-
iment profile images: the presence of methane gas bubbles at
depth in the sediment (these are readily visible in sediment
profile images). The build-up of methane gas in the sediment
is typically a result of excess organic loading and anaerobic
decomposition (Rhoads and Germano 1982). I would like to
see if this is a useful parameter for predicting whether or not an
area will develop hypoxic or anoxic waters. After completing
24 surveys, the data sort out as illustrated in Fig. 3.

After presenting these data to an audience, I ask them
to estimate the relationship between the measured variable
(methane in the sediment) and predicted outcome (develop-
ment of hypoxic or anoxic waters) on a contingency scale from
0 to 100, where 0 is no relation, 100 equals a complete relation.
I give them the following four choices as interval ranges for
the relationship and by a show of hands indicate which one
they would choose:

1. 0− 2
2. 2− 20
3. 20− 60
4. 60− 100

WhenArkes (1981) presented similar data to subjects and asked
them to estimate a number, the mean was 64; whenever I have
posed this situation to audiences, the majority of hands have
always gone up on choice #3, with choice #4 a close second.
Occasionally a few brave souls have chosen #2, and once a
single individual chose #1. People are often surprised to find
out that the actual relationship between this variable and the
outcome given these data is zero, because the outcome (hy-
poxia) is twice as likely to occur regardless of whether or not
the “symptom” (methane) is present. People are consistently
fooled by the large magnitude in Cell A, and this produces a
badly biased estimate of contingency.

If you just think for a moment how one might investigate a
correlation of a supposed predictive variable, you will gain an
instant appreciation of how unimportant Cells C and D (Fig.

2) seem to be. You are studying a few embayments where al-
gal blooms occur every summer, and you suspect that a certain
threshold level of nitrogen flux from the sediment may be diag-
nostic of the impending bloom. To verify this, you keep track
of the nitrogen flux on a weekly basis in each of these embay-
ments to see when the bloom occurs. Would you also consider
keeping track of an equal number of embayments where algal
blooms never occur or where extremely low flux levels of ni-
trogen have been reported? Consideration of the information
in Cells C and D is mandatory for a scientist or clinician to de-
termine if a measured variable and condition (or symptom and
disease if you prefer the medical analogy) are related.Yet, these
are the measurements that are often never made, or, if they are
made, the results that are never reported (or get rejected for
publication).

Problem 2: The bias of preconceived notions

This can also be classified as overreliance on confirmatory
strategies. A classic study by Chapman and Chapman (1967)
dramatically illustrated this problem in the field of psychol-
ogy: drawings were randomly paired with personality traits
presumably characteristic of the person who did the drawings.
Clinicians, when asked to evaluate the drawings, fabricated il-
lusory correlations between drawing features and personality
traits. Prior associations by the evaluators warped the percep-
tion of incoming data, so much so that even when the true
relation between a drawing feature and a trait was negative, it
was seen and tallied as positive. A prior association or bias not
only warps the perception of an existing correlation, it impedes
the accurate processing of individual data (Arkes 1981). When
researchers set out to test their hypotheses, more often than not
they seek confirmatory evidence exclusively (i.e., only exam-
ples in Cell A in Fig. 2), and when disconfirmatory evidence is
obtained, it is underweighted or dismissed (Faust 1986b). This
point has been humorously illustrated in many of the fictional
Sherlock Holmes movies where this bias is exaggerated to the
hilt by the character of Inspector Lestrade. Lestrade will walk
in on a murder scene, make an instant judgment about who
the killer is, and then explain how every clue he subsequently
finds supports his initial theory. This tendency to search for
confirmatory evidence exclusively has already been pointed
out as a shortcoming in ecology by Loehle (1987) and is what
Rousseau (1992) has called “pathological science.”

When an ecologist has an idea that a certain species is a
good pollution indicator or that certain levels of a measured
water column parameter are diagnostic of impending hypoxia,
this “prior association” will be the lens through which they
view all incoming data, even to the point where data from
known polluted or hypoxic areas will produce the perception
of a positive correlation when the true relation between the
variable and the outcome was negative. If data do not agree
with an investigator’s preconceived notions, their natural in-
stinct is to either ignore the data or, if recognized, dismiss its
importance. After completing a study, it is always an instruc-
tive exercise to use the same data set to try to support exactly
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the opposite of your initial hypotheses.
Investigators in the field of expert judgment have docu-

mented in several studies that all subsequent data gleaned after
an initial tentative diagnosis is formed will be biased by those
initial opinions; data consistent with the tentative diagnosis
will be given added credence, while those inconsistent with
the hypothesis will be disregarded (e.g., Chapman and Chap-
man 1967, 1969; Tversky and Kahneman 1974; Shweder 1977;
Lord et al. 1979; Nisbett and Ross 1980). Unfortunately, even
admitting to yourself that an initial opinion or hypothesis is
merely tentative does not decrease its biasing influence. (Ross
et al. 1977; Arkes 1981). The positive reinforcement of finding
anyevidence to put a tick mark in CellA in Fig. 2 is so powerful
that investigators will cling to the memory of any occurrence
in Cell A while dismissing or not remembering data in Cells
B or C (Lord et al. 1979). Marie Von Ebner-Eschenbach once
quipped, “Even a stopped clock is right twice every day. Af-
ter some years, it can boast of a long series of successes.” The
real problem with ecosystems, as with human personalities and
behavior, is that there is a rich source of varied data that will
allow any investigator to find some confirmatory evidence for
almost any hypothesis, regardless of its validity (Faust 1986b);
given enough data, all but the most outlandish diagnosis or hy-
pothesis can appear obvious (Arkes 1981).

Problem 3: Lack of awareness and overconfidence

These two bad habits are the Scylla and Charybdis of the
research scientist, senior consultant, or expert scientific wit-
ness. Work from a variety of investigators (e.g., Nisbett and
Wilson 1977; Summers et al. 1969; Oskamp 1967) indicates
we have negligible awareness of the factors that influence our
judgment or final decision.Their studies demonstrate that when
practitioners are presented with a variety of symptoms in a pa-
tient, the clinicians are unaware of the impact each symptom
had on their final diagnosis. Sampling any number of reports
in the “grey literature” about synthetic measures of sediment
“quality” such as the sediment quality triad (Chapman et al.
1987) or the apparent effects threshold (AET) that has taken
the regulatory community in the Pacific Northwest by storm
(PTI 1988) will show more often than not that one or more
of the variables contributing to the final index score are ei-
ther equivocal or may be the key variable supporting the final
conclusion about potential harm of chemical contamination. I
cannot find any good reason to suspect why marine ecologists
are any different than medical clinicians in this respect; I am
sure we would demonstrate the same inability to explain ac-
curately which data really influenced our final interpretation
of ecosystem health or stress (was it the benthic community
data, the presence of a particular species, the diversity index,
the level of sediment contamination, or the bioassay results?).

Another factor that impedes accurate assessment is some-
times the serious overconfidence that scientists have in their
final interpretation (often the same as their initial diagnosis).
Numerous studies (e.g., Oskamp 1965; Dawes et al. 1989)
have shown that providing an investigator with more infor-

mation increases their confidence in their interpretation with-
out necessarily increasing the accuracy of their judgement (in
other words, selectively filtering the data to confirm a pre-
conceived hypothesis; the initial diagnosis becomes a self-
fulfilling prophesy). Even more discouraging was to read about
studies that showed the most confident diagnosticians tended
to be the least accurate (remember this next time you experi-
ence vague or contradictory symptoms and consult a doctor).
Unfortunately, it is a basic human trait to disregard evidence
that contradicts your current judgment; with selective filtering
of confirmatory evidence and censorship of nonconfirmatory
evidence, many hypotheses cannot fail to be well substantiated.

Problem 4: Disregard or underuse of base rates
This appears to be one area where medical epidemiologists

and clinical psychologists are light years ahead of marine ecol-
ogists in terms of awareness of how this can affect the diagnos-
tic validity of any predictive variables. The value ofanypredic-
tive diagnostic test (e.g.,AcidVolatile Sulfides/Simultaneously
Extracted Metals (AVS/SEM),AET, Effects Range Low/Effects
Range Medium (ERL/ERM), standard acute toxicity bioas-
says, etc.) cannot be determined without at least knowing the
base rate(s) for both the outcome(s) (“disease” in the medi-
cal model) to be identifiedand for both the false negative and
false positive identifications (i.e., Cells B and C in Fig. 2). The
tendency to overlook or underuse base rates is common even
in the fields of medicine and psychology (e.g., Faust 1986b),
so its complete absence in ecology and ecological risk assess-
ment is not all that surprising. The clinical literature is full of
convincing examples that point out the pitfalls of disregarding
or not using base rates (e.g., Kahneman and Tversky 1973;
Nisbett et al. 1976; Tversky and Kahneman 1978; Arkes 1981;
Faust 1986a). Because this is usually a completely neglected
aspect in marine ecological data interpretation, I will present
two examples adapted from Arkes (1981) and Faust (1986a)
that illustrate the seriousness of ignoring this aspect:

Example 1: The case of recurring algal blooms

You work for a large, international environmental consult-
ing firm that specializes in ecological risk assessment and in-
vests quite heavily in R&D for monitoring instrumentation.
Your company has just developed a proprietary remote sensing
technique that will predict the occurrence of algal blooms in
response to eutrophic waters. Your assessment technique has
the following characteristics:

• The technique gives a positive prediction in 95 out of 100
areas that do go eutrophic and develop algal blooms;

• The technique gives a negative prediction for 95 out of
100 areas that never develop algal blooms.

It is fair to say that if any company did develop such a tool,
they would be able to make a mint in the consulting field; their
investigators would (justifiably) feel extremely confident about
the diagnostic power of the method (after all, it has only a 5%
error rate for false positives and false negatives).
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Now, for the past 5 years, there have been recurring prob-
lems with eutrophication and algal blooms destroying the tourist
industry in the Mediterranean. Each year, an average of five em-
bayments that were previously undetected out of 1000 along
a coastline will go eutrophic. You have just been awarded a
major contract by the government of Italy to survey an area
of coastline that is critical for its economic value in attracting
tourists to its beaches. If this proprietary assessment technique
is used to survey a randomly selected embayment along this
section of coastline and the prediction is positive, what is the
probability that the area will experience an algal bloom during
the next summer? Should you feel confident in recommending
that your client spend additional funds to initiate any mitigat-
ing resource management actions right now as a result of your
conclusions? The answer to this last question is no; the reason
for this surprising conclusion is presented in the next section
of the paper.

Example 2: The case of flounder liver lesions

Suppose the base rate of flounder liver lesions from sed-
iment contamination in a population is 1 per 100000. Sup-
pose Toxicologist Jones just plays the base rates and always
concludes the condition is never present without spending the
money to do any histopathological analyses. However, Toxi-
cologist Smith has jumped on the biomarker bandwagon and is
willing to diagnose the condition. For argument’s sake, let us
say Smith never misses a true case of sediment-induced floun-
der liver lesions (i.e., he never gets a false negative); however,
he does make a false positive identification for 1 in 1000 cases
(i.e., he says the condition is present when it is not).

We should recognize before proceeding further that we
have endowed Toxicologist Smith with remarkable diagnos-
tic powers that exceed most analytical chemistry or toxicol-
ogy laboratories (i.e., a 0% false negative and a 0.1% false
positive rate). An extensive regional sampling survey is done
(similar to EPA’s EMAP program) and the results are applied
to the 100000 flounders that were caught. Toxicologist Jones
misses the 1 case when the condition is actually present (a
false negative error), and Smith misses the 0.1%× 99999
cases in which the condition is not present, or makes about
100 false positive errors. Therefore, Smith is wrong 100 times
more often than Jones. While the example is extreme, one of
the points that Faust has made repeatedly in his various publi-
cations (1984, 1986a, 1986b, 1989) cannot be ignored:unless
a test can surpass the diagnostic hit rate achieved by the
base rates alone, it will decrease instead of increase diag-
nostic accuracy. Should we use sediment quality criteria that
correctly predicts toxicity 90% of the time? The answer may
seem obvious, but it cannot be determined unless one knows
the base rates in the population of interest. Again, this is clear
in the extreme case: the test will not help if the base rate is
100%.

Problem 5: Hindsight bias

Given a rich source of data (regardless of whether it is
medical symptoms or environmental variables), almost any di-
agnosis can be supported unless it is truly outrageous. This is
whatArkes (1981) termed “hindsight bias,” a phenomenon ini-
tially documented by Fischhoff (1975). Fischhoff asked three
groups of clinicians to read psychotherapy case histories and
then judge the likelihood of four possible circumstances that
may have followed therapy. One group was not told the out-
come (foresight group), one group was told Outcome A would
occur (hindsight group), another that Outcome B would occur
(hindsight group). Of the two hindsight groups, those that were
told in advance that Outcome A had occurred assigned proba-
bilities to Outcome A that were 49% higher than the foresight
group; the other hindsight group also predicted that Outcome B
would have been easy for them to predict (the foresight group
did not consider B to be a likely outcome). Arkes et al. (1986)
found the same effect with medical diagnoses (presumably
where the symptom–disease relationship is more exact than
in psychology); a foresight group was shown an actual case
history and asked to assign probabilities to four possible out-
comes. Each of four hindsight groups were told that a different
one of the four diagnoses were true; once again, the hindsight
bias emerged and each of the hindsight groups assigned higher
probabilities to the particular outcome they were told than the
foresight group.

Given enough data, many diagnoses (or environmental im-
pact conclusions) can appear obvious. Give the same benthic
community data set to ten different investigators, and I feel
confident you will get a wide range of final judgments about
how “stressed” an area is. I have noticed the same phenomenon
when training students on how to interpret results from a sed-
iment profile camera survey; very often, I will give them a
set of sediment profile photographs for which all the measure-
ments are completed and the final report written. Their final
interpretation of what is going on in an area is very different
if they have read the report before they start work instead of
doing the work “blind” and then comparing their results to the
report. This problem is going to be evenmoreacute as more
ecologists and environmental scientists are involved in multi-
disciplinary studies that collect a wide variety of biological,
physical, and chemical parameters — given enough data, any
one of several conclusions can appear to be obvious when read
in hindsight.

Part 2: Summary

The most common impediments that ecologists will face in
finding valid predictors or ecological indicators to accurately
diagnose ecosystem health are the same ones clinicians face in
diagnosing medical or mental health in humans:

1. misestimation of covariation,

2. the bias of preconceived notions or initial hypotheses,

3. lack of awareness and overconfidence,
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4. disregard or underuse of base rates,

5. hindsight bias.

One of the main weaknesses with the derivation of ERL/ERM’s
(Long and Morgan 1990; Long et al. 1998) as predictors of
sediment quality is that only the “hit” data (sediments which
demonstrate an effect in the paired bioassay test) are incorpo-
rated to derive the final sediment quality values (i.e., all the data
from Cells B and D in Fig. 2 are discarded from the original data
set before these sediment quality “predictors” are calculated).
Because most researchers and investigators in ecology are un-
aware of the impacts of the above problems on the strength of
the conclusions they reach, we still have a long way to go just
to heighten awareness in the minds of both the “experts” who
interpret the data and the regulators who enforce the implica-
tions of their own interpretations of these data. The evidence
for the utility of the expert scientist or consultant as an ac-
curate diagnostician given these problems is not overwhelm-
ing; the judgment literature is rich on the underperformance
of the clinical diagnostician (e.g., Meehl 1954, 1973; Einhorn
and Hogarth 1981; Pitz and Sachs 1984; Faust 1984, 1986a,
1986b, 1989; Dawes et al. 1989), so we would be wise not to
put too much faith in our individual integrative or synthetic
ability. Fortunately, there are a variety of trails out of this maze
that have been blazed by investigators outside of the field of
ecology, and we would do well to take advantage of these not
only to examine our existing techniques, but also to point the
way for new directions in the future. This topic is examined in
the next section of this paper.

Part 3: Suggestions for improving the
ecologist’s diagnostic accuracy and
alternative approaches to ecological data
analysis

Lest the reader is thoroughly depressed by this point with
no hope for changing our current behavior as scientists, it is
now time for the “good news.” Once again taking inspiration
from the psychoanalytic model, I will suggest a variety of al-
ternatives for reframing the way ecologists can view environ-
mental data and problems of ecosystem health; it is up to the
individual investigator whether or not they find any of these
ideas useful or to determine which would be most appropriate
in their particular situation. As I stated at the outset, while my
intent is to hold a critical mirror up to view the current sta-
tus of our discipline, I do not presume to offer a panacea that
will solve all the problems we face. However, these alternative
debiasing techniques and statistical methods appear to me to
offer a more enlightened approach to dealing with the wealth
of environmental data that drown most regulatory agencies.

Suggestion 1: Include ignored information: think
Bayesian

Probably one of the most promising avenues for increas-
ing the impact of usually ignored information (i.e., assessing

the effects of covariation accurately, or incorporating the in-
formation from Cells B and C in Fig. 2) and avoiding the pit-
falls of NHST is the application of Bayesian statistics. Again,
I will just present an overview of some of the major points
and refer the interested reader to the host of journal articles
or textbooks for more details (e.g., Schlaifer 1961; Edwards et
al. 1963; Galen and Gambino 1975; Lusted 1968; Schwartz et
al. 1973; Arkes 1981; Iversen 1984; Berger 1985; Lee 1989;
Press 1989). While Bayesian statistics are more popular and
better known in the realm of business statistics for performing
cost/benefit analyses, they also provide the appropriate frame-
work for dealing with medical, psychological, and ecological
data for decision analysis and validating predictive models.
While Bayesian applications are not new to fisheries science
(e.g., Punt and Hilborn 1997), and articles have been written
in the past extolling their utility for ecology (e.g., Reckhow
1990) or risk assessment (e.g., Hill 1996), they are the excep-
tion rather than the rule for study design or data interpretation.
My hope is that by making the same point as some of these
other investigators but in a slightly different format, more peo-
ple will understand their advantages and start using them in
their own work.

A Bayesian analysis will allow us to accurately assess
how useful our proprietary remote sensing technique for algal
blooms (presented in the last section) really is. Bayes’ theorem
is a simple and fundamental fact about probability applied to a
field of statistics: probability is orderly opinion, and inference
from data is nothing other than the revision of such opinion
in the light of relevant new information (Edwards et al. 1963).
The prior odds are expressed as a ratio of the likelihood of
the hypothesis being true divided by the likelihood of the hy-
pothesis being false, orp(H )/p(H̄ ); once new information
or data are obtained, the prior odds must be modified in light
of this new information (Arkes 1981). To do this, the prior
odds are multiplied by the likelihood ratio, which is the prob-
ability of obtaining that piece of datum if the hypothesis were
true divided by the probability of obtaining the datum if the
hypothesis were false, orp(D | H )/p(D | H̄ ) (these terms
should look familiar from the discussion in the first section of
the paper on NHST). When the prior odds are multiplied by the
likelihood ratio, we get the posterior odds. The posterior odds
are the probability that the hypothesis is true given this piece of
information divided by the probability that the hypothesis is not
true given this piece of information, orp(H | D)/p(H̄ | D).
Recall from the initial section on NHST, we are finally deal-
ing with the information we want [p(H | D)] instead of what
classical Fisherian statistics provides us [p(D | H0)]. So, the
whole formula is

Posterior odds = Likelihood ratio× Prior odds,
or,

p(H |D)

p(H̄ |D)
= p(D|H )

p(D|H̄ )
× p(H )

p(H̄ )
[1]

So, let us use this construct to examine the situation posed in
the last section of the paper. The prior odds of having an algal
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bloom are

p(Hab)

p(H̄ab)
= 5

995
[2]

because I stated initially that an average of 5 out of every 1000
embayments will experience this phenomenon. These are the
odds beforeanymeasurements are made. The likelihood ratio
is

p(D|Hab)

p(H̄ab)
= 95

5
[3]

because a positive assessment is given 95% of the time an
algal bloom will occur and 5% of the time when a bloom never
happens. The posterior odds are

p(Hab|D)

p(H̄ab|D)
= 95

5
× 5

995
= 475

4975
[4]

Because this fraction is an expression of odds, it means out
of every 5450 positive indications with this assessment tech-
nique, only 475 will be from embayments that actually develop
algal blooms and 4975 will be from embayments that never go
eutrophic. Therefore, the probability that a positive test is from
an embayment that actually will have an algal bloom is

475

475+ 4975
= 9%[5]

If you had assumed your remote sensing “predictor” was giving
you accurate advice and advocated the implementation of re-
mediation measures, it is because you were probably impressed
by the wonderfully high diagnosticity of the assessment tech-
nique. Unfortunately, if the prior odds are ignored (a reflection
of the base rate or the commonness or rareness of the outcome
you are trying to predict), the conclusions can be extremely
misleading. What is even more distressing is that the confir-
matory results (no blooms occurred) from treating the 91% of
the lagoons that would have never gone eutrophic anyway with
whatever remediation technology was applied would just rein-
force your pre-existing bias: all the money your client spent on
the remediation treatment obviously was worth it, because no
blooms occurred; ergo, your assessment technique was right
on the money and essential for diverting impending disaster
in these 5450 embayments. The false positives would never
be identified without a double-blind experimental design if the
base rates (priors) are ignored. All too often we are impressed
by the wonderfully high diagnosticity of certain assessment
techniques (just look at what is going on in the field of sed-
iment quality criteria and the application of bioassays using
sensitive test species); these are reflected in the likelihood ra-
tio. If there were some way to get scientists and regulators to
pay attention to the base rates, there would be a phenomenal
amount of money saved in toxicity tests as well as immense
improvements in diagnostic accuracy of ecosystem health or
stress.

Suggestion 2: Entertain alternative hypotheses
Aldous Huxley is credited with stating that “The tragedy

of science is that frequently a beautiful hypothesis is slain by
an ugly fact.” (Preston 1981). One of the most basic concepts
that most ecologists and environmental scientists are aware of
but relatively few (if any of us) uphold in actual practice is
to seriously consider alternative hypotheses. One of the main
problems with NHST is that it assumes a totally binary sys-
tem of alternatives, either the null hypothesis or the research
hypothesis (and, as readers know by this point, it tells us abso-
lutely nothing about the research hypothesis); it is extremely
rare to come upon a phenomenon in nature where there are only
two possible explanations (i.e., your research hypothesis or the
null hypothesis of no change or difference). It is more likely
that a continuum of explanatory hypotheses between these two
choices exist.

Investigators would profit enormously from being self-
critical as well as objective while developing as broad an hy-
pothesis set as possible. The essence of decision analysis ar-
guments put forward by Raiffa (1968) and others is that when
people make decisions under uncertainty, they will examine
the range of possible outcomes of each decision in terms of
costs (or some other measure); they will then weight each pos-
sible outcome in terms of how likely they expect that outcome
to occur. In other words, people make choices by comparing
the expected payoffs from their range of choices, where the
expected utility of each choice is a sum or average of possi-
ble outcomes, each weighted by the odds of its occurrence. If
this is indeed an accurate depiction of decision making, then,
in essence, no possible outcomes are actually “rejected,” espe-
cially if an outcome is very costly. Instead, people might assign
a particularly costly outcome a low probability, but they still
could worry about it as a possibility.

In the last section of the paper where the problems of pre-
conceived notions and hindsight bias were discussed, one good
training exercise to heighten awareness of potential bias is that
once you have explained how outcome “x” might have been
expected given the existing data, then attempt to explain how
outcome “y” (one of your several alternative hypotheses) can
be supported by the same set of data instead of outcome “x.”
Problem solvers since Benjamin Franklin (Wickelgren 1974)
have suggested that decision making is improved if one en-
sures that all alternatives are given substantial consideration;
even modest efforts in this approach (i.e., listing one or two rea-
sons why you think your conclusion is incorrect and one or two
reasons to support other interpretations) have been shown to
pay substantial dividends (Faust 1986b; Fischhoff 1982; Koriat
et al. 1980; Slovic and Fischhoff 1977). Studies in the medical
field have shown that the most accurate diagnosticians tend to
arrive at their final diagnosis later than do less accurate clin-
icians (Elstein et al. 1978); I cannot imagine any reason why
the same would not be true for ecologists or environmental sci-
entists. Premature formulation results in the biased processing
of subsequent data. It appears that a valid way to improve ac-
curacy and reduce bias is to entertain alternative hypotheses
for a long period of time (Arkes 1981).
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Suggestion 3: Critically examine predictor variables
When doing any risk assessment or environmental impact

study, the ecologist (consultant, academician, etc.) is more of-
ten than not faced with a myriad of multidisciplinary data.
Like benthic ecologists who are routinely faced with making
sense of large 3-dimensional data matrices (station locations×
species× abundance), environmental scientists frequently turn
to multivariate statistical techniques such as classification and
ordination (e.g., Pielou 1984) as a way of organizing, distilling,
and making sense out of a large volume of data. While every
statistical text always cautions practitioners about the connec-
tion between correlation and causation, as Gould (1981) has
pointed out, much of the fascination with statistics is embedded
in the gut feeling that abstract measures summarizing large ta-
bles of data express some mysterious truth or something more
real and fundamental than the data themselves. Gould (1981)
gives the humorous illustration of factor analysis of a 5× 5
correlation matrix of his age, the population of Mexico, the
price of Swiss cheese, his pet turtle’s weight, and the average
distance between galaxies during the past 10 years yielding a
strong first principal component (p. 250).

My intent is not to just emphasize these cautionary re-
strictions on multivariate techniques, but instead to highlight
research in the field of expert judgment on predictive variables
(e.g., Goldberg 1968; Dawes 1979; Faust 1986a, 1986b). The
real problem is not so much about how to weight or interrelate
different variables (contrary to what the literature in benthic
ecology would indicate, e.g., Erman and Helm 1971; Field
1971; Hughes and Thomas 1971; Cassie 1972; Chardy et al.
1976; Culp and Davies 1980; Poore and Mobley 1980; Kohn
and Riggs 1982; Williams et al. 1982), but, more precisely,
which variables should be used for consideration. The recom-
mended course of action may seem counter-intuitive, because
conventional wisdom would dictate that the more information
one has at one’s disposal to integrate, the better the results.
Results to date indicate that improving judgmental accuracy
is usually more an exercise in exclusion than one of inclusion
(Faust 1989).

A limited set of valid predictors (ca. 3 or 4), if simply
added together and not weighted, is as predictive or nearly
as predictive as optimally weighted variables (Goldberg 1968;
Dawes 1979; Faust 1986a, 1986b). Psychologists, like benthic
ecologists and risk assessors, are more likely to err by over-
including predictors than by not optimally weighting the most
valid predictors. An especially sobering fact for those embark-
ing on risk assessments is that including more than the two
or three most valid variables in the prediction formula only
minimally increases predictive accuracy (Faust 1986a), and
expanding the list of variables for inclusion often decreases
predictive accuracy. The recent resurgence of interest in the
minimalist approach of bounded rationality decision models
also supports the contention that better decisions can be made
with a few simple predictors (Bower 1999). The ceiling on pre-
dictive accuracy is usually approached once two, three, or four
of the most valid variables have been identified (Faust 1989);
the trap most benthic ecologists fall into is that because they

have taken the time to identifyall the animals in a sample, they
feel compelled to include all these data in their final analyses
(Germano 1985). This type of error is magnified by techniques
such as the sediment quality triad and the AET, which include
benthic community summary indices as part of their final index
value. If an individual variable is not a valid, reliable predic-
tor, the greatest likelihood is that it will decrease the overall
accuracy of any conclusion reached. Faust (1986a, 1986b) has
summarized three useful tests to determine which variables
should be included for diagnostic predictions:

Test 1: Is there a true association?

To determine if a variable is a valid predictor, it is essential
to have an accurate assessment of covariation: the environmen-
tal outcome must occur more often when the variable is present
than when it is absent. To determine this, one must have in-
formation fromall four cells in Fig. 2; if not, any conclusions
about the validity of the predictor under consideration must be
considered tentative.

Test 2: Does the measured variable increase diagnostic
accuracy?

While a predictor may pass Test 1, it still may not pass Test
2. The predictor must surpass the diagnostic hit rate achieved
by using the base rates alone; therefore, the frequency of false
identifications must be lower than the frequency of the envi-
ronmental condition. If it is not, and false negative errors are
no more costly than false positives, then one should not use the
predictor and just rely on the base rates. Using the base rates
alone to support predictions means that if the condition occurs
more than 50% of the time, one should always sayyes(con-
dition present); if the condition occurs less than 50% of the
time, always sayno. For high- and low-frequency outcomes
(i.e., very common or very rare occurrences), most predictors
do not improve upon the accuracy rate achieved just by using
base rates alone (the example of the flounder liver lesions in
the last section).

Test 3: Does the measured variable produce incremental
validity?

This is the final acid test, for a predictor can pass Tests
1 and 2 and still fail this last one. This can occur when the
predictor is redundant with other predictive variables of higher
validity (or may add so little incremental validity that it is not
worth the effort to obtain). Adding a variable of low or modest
validity to two or three variables of greater validity will usually
decrease or, at the very least, not alter judgment accuracy.

Faust (1986b) points out that very few of the diagnostic
tests used in clinical psychology pass all three of these tests
(many do not pass the first one). Very few (if any) environ-
mental predictors have ever been subjected to any of these
tests; witness the confusion and controversy during the last
few years over endocrine disruptors (Kaiser 1996). The rote
practice of risk assessors automatically calculating Hazard In-
dices and Hazard Quotients (wholly dependent upon the num-
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ber of chemicals of concern measured or identified) would
most likely be eliminated entirely if these supposed predictors
were subjected to the above tests. If environmental scientists
routinely applied these rules, I am fairly confident that both
the U.S. Army Corps’ and EPA’s “Green book” and “Inland
testing manual” for dredged material testing would look quite
different from what it does today.

Suggestion 4: Decrease reliance on memory
Eliminating the fallibility of recall is one of the most simple

but effective strategies, and one that I am reminded of daily as
I get older. Arkes and Harkness (1980) report that unpresented
symptoms consistent with a diagnosis tended to be remem-
bered as having been presented; conversely, in some circum-
stances, presented symptoms that were inconsistent with the
diagnosis were not remembered as having been presented (the
bias of preconceived notions). Unfortunately, one tends to re-
member the facts supportive of any particular hypothesis and
to forget those inconsistent with the hypothesis.

Another problem of relying on memory instead of data
records as far as overcoming the common tendency to misesti-
mate covariation was highlighted by Ward and Jenkins (1965).
Estimates of covariation in their tested subjects were grossly
incorrect when individual pieces of data were presented one at
a time (taxing subjects’ short-term memory); when box-score
summaries of all four cells shown in Fig. 2 were presented
simultaneously, estimates were much more accurate.

With the wealth of environmental data to which most reg-
ulators and scientists have access, we would be much better
served by simply looking things up instead of relying on our
memory; this assumes that the data are organized and easily
accessible, and the current trend toward database compilation
and information management is a critical, necessary step in
the right direction for scientists and environmental resource
managers to eliminate these types of errors. As Arkes (1981)
stated,

...a more humble view of one’s own memory will
result in less of a need to be humble about the
accuracy of one’s judgment (p. 329).

Suggestion 5: Increase reliance on actuarial methods
The scientist or consultant called in to do a risk assessment

study or to be an expert witness in any sort of environmental
litigation often is confronted with an overwhelming array of
data. The real issue here is how well any individual, regardless
of his or her professional background, education, or training
can meet this demand. A considerable amount of research has
been done on the merits of clinical versus actuarial judgment,
starting with the first introduction to this topic by Meehl (1954)
over four decades ago and numerous studies since that time (for
reviews, see Meehl 1965; Sawyer 1966; Wiggins 1973, 1981).
In the clinical method, the decision-maker (e.g., regulator, sci-
entist, consultant, expert witness) combines or processes infor-
mation in their head; in the actuarial or statistical method, the
human judge is eliminated and conclusions are based solely on

empirically established relations between the data collected or
available and the outcome or condition of interest (Dawes et
al. 1989).

The results of studies comparing clinical to actuarial meth-
ods are not only disappointing but often alarming; actuarial
methods have consistently outperformed clinical judgment.
There are more than 100 studies that have compared the accu-
racy of clinical to actuarial judgement encompassing a wide
range of diagnostic and predictive tasks; based on a recent re-
view, Dawes et al. (1989) stated “in virtually every one of these
studies, the actuarial method has equaled or surpassed the clin-
ical method, sometimes slightly and sometimes substantially”
(p. 1669). In one of the early and now classic studies in the
field of psychology, Goldberg (1959) showed that the judg-
ment effectiveness of experts (psychologists) in distinguishing
patients with and without organic brain damage by interpret-
ing test results failed to surpass that of a group of secretaries
and barely exceeded chance levels.A variety of judgment stud-
ies since that time have shown low clinician performance (e.g.,
Goldberg 1968; Einhorn 1972; Slovic and MacPhillamy 1974).
Dawes (1971) found that an actuarial method based on a single
variable was more accurate at predicting success in graduate
school than the clinical judgments of the admissions committee
working with data from multiple sources. There are several rea-
sons for this, many of which have been touched on above (e.g.,
the clinician’s difficulty in distinguishing between predictive
and nonpredictive variables, the bias of preconceived notions),
but the essential problem appears to be that human beings are
not computers: individuals have difficulty handling more than
two or three variables, so they are not effective at mental re-
tention, weighting, and (or) organization of data (Faust 1984,
1989).

While the scientist involved in risk assessment studies may
contend that careful attention to the relative importance of
variables (or proper weighting) is crucial to a final interpreta-
tion, not only do individuals have difficulty in assigning such
weights (Faust 1984, 1989), but Dawes and Corrigan (1974)
have shown that the value of optimal weighting is often over-
estimated; it usually provides negligible advantage over equal
unit weights. In most cases, predictions on equal unit weights
correlate highly with those based on optimal weights; even
randomly assigned weights generally result in predictive ac-
curacy that approaches optimal weighting of variables (see
Dawes 1979 for discussion of these issues). These findings
suggest that the derivation of assessment techniques such as
the sediment quality triad or AET could bear re-examination.
Meehl (1986) addressed subjective weighting of variables as
follows:

Surely we all know that the human brain is poor
at weighting and computing. When you check out
at a supermarket, you don’t eyeball the heap of
purchases and say to the clerk, “Well it looks to
me as if it’s about $17.00 worth; what do you
think?” The clerk adds it up. There are no strong
arguments...from empirical studies...for believing
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that human beings can assign optimal weights in
equations subjectively or that they apply their own
weights consistently (p. 372).

After citing the above passage, Dawes et al. (1989) expanded
this line of thought in response to those who justified the clini-
cal or human judgment approach because they were not dealing
with simple additive models:

Suppose instead that the supermarket pricing rule
were, “Whenever both beef and fresh vegetables
are involved, multiply the logarithm of 0.78 of the
meat price by the square root of twice the veg-
etable price”; would the clerk and customer eye-
ball that any better? Worse, almost certainly (p.
1672).

The authors illustrate quite dramatically that if human judg-
ment performs poorly with simple additive models, then it
should not be expected to do better with mental models re-
quiring more complex manipulation of the input variables.
A considerable body of research in the fields of psychology,
medicine, and decision-making indicate that properly devel-
oped actuarial methods are more accurate at both diagnosis
and prediction than the clinical method, even when the scien-
tist or decision-maker has access to equal or greater amounts
of information. It appears that we as environmental scientists
or ecologists would make greater advances in assessing en-
vironmental health or predicting risk if we spent more time
developing proper actuarial methods so that the constant re-
liance on an individual regional regulator’s “best professional
judgment” so common in regulatory guidance documents (the
“Green book” and “Inland testing manual”) would become a
thing of the past.

Suggestion 6: Recognize predictive uncertainty
Although the public at large often looks to the scientist to

“provide the facts” so that decisions can be made with absolute
certainty based on known outcomes, environmental problems
are not chemical reactions. Prediction contains a certain el-
ement of chance, often more than most people recognize or
scientists are willing to admit. Whether scientists like to ad-
mit it or not, errors are unavoidable. Because of the limitations
of our knowledge of ecosystem function and the unexpected
results that can occur from the interaction of human activities
with natural ecological processes, the predicted “outcomes”
are often times a best guess. If one defines an experiment as
“an action whose outcome we cannot predict precisely or spec-
ify beforehand” (i.e., the disposal of dredged material in the
natural system), then an alternative frame of reference is to
view environmental monitoring or remedial investigations as
feedback mechanisms providing data about the outcome of
experiments (Bernstein and Zalinski 1986). This admission of
fallibility does not detract from the underlying basic value of
the study or the development of better assessment and predic-
tive techniques; it merely requires letting go of the illusion of
certainty (Holling 1978).

Because chance is unavoidable in prediction, there are two
general suggestions to deal with this sobering fact (Faust 1986b).
First, one should not abandon good predictors because they are
fallible (Arkes et al. 1986); it is unrealistic to think that we will
ever find predictors that only score “hits” in Cells A and D in
Fig. 2 (i.e., no false positives or negatives). This can cause sci-
entists to dismiss state-of-the-art predictors when examined in
light of the information presented in this paper because they do
not meet their preconceived notions of what scientific standards
should be. There are useful nonparametric methods available
for estimating prediction error (Efron and Gong 1983), so the
magnitude of errors associated with different predictors can be
compared. One should have a better predictor before one gives
up a good one (Faust 1986b).

Second, scientists and consultant experts alike should ac-
knowledge the uncertainty associated with their conclusions,
so that when decision makers receive these results, they can
be conservative when appropriate; it is rare to find a predic-
tive situation that justifies extreme confidence. Obviously, if
the cost of errors is grave (acute human health risk), then one
should be cautious and err in that direction (a false positive is
much more desirable in this case than a false negative).

Part 3: Summary

In one of his papers on the application of human judg-
ment to clinical practice, Faust (1986b) stated that two types
of insight are needed for improvement, which I believe apply
to ecologists as well. The first is an accurate assessment of
the current problems in the field; investigators need to educate
themselves about the situations in which errors are likely and
the sources of errors. The second is that investigators must rec-
ognize the limits of self-recognition. Just having an awareness
or admitting that one does make errors does not protect one
against them; many of our judgment habits are so ingrained
that they occur without our recognition and may be only partly
accessible to conscious awareness. Ecologists, just like medi-
cal clinicians, need to learn when not to rely on intuitive judg-
ments and when to use cross-validation methods and actuarial
techniques that surpass their unaided decision powers.

Six recommendations were made to improve diagnostic
accuracy and to suggest alternative approaches to ecological
risk assessment:

1. Use Bayesian statistical methods

2. Systematically evaluate outcomes from a broad hypoth-
esis set

3. Critically examine predictor variables using the three
recommended tests

4. Decrease reliance on memory

5. Increase reliance on actuarial methods

6. Recognize predictive uncertainty
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Suggestion numbers 1, 3, and 5 would constitute more of a
paradigm shift in a basic approach for ecologists and risk as-
sessors, and they are all linked to one another. Valid actuarial
methods can be derived once accurate predictor variables are
found, and inferences derived from Bayesian statistical meth-
ods far outweigh those from a classical or Fisherian approach
for finding accurate predictors.

These six approaches would provide a new route to discov-
ering the untapped information contained within the enormous
environmental databases that have been compiled by EPA, Na-
tional Oceanic and Atmospheric Administration (NOAA), or
the U.S. Army Corps of Engineers (Ocean Data Evaluation
System (ODES), Storage and Retrieval (STORET), National
Status and Trends (NS&T), Environmental Residue-Effects
Database (ERED), etc.). The advances in electronic imaging
workstations combined with the wealth of data that already
exists would allow investigators to have access to and sort
variables of interest rapidly and efficiently so that they could
accurately examine covariation for proposed predictors or cri-
teria. Alternative hypotheses could be formulated and tested
with a wealth of on-line data; the usefulness of any suggested
predictors could then be assessed with Bayesian methods. Fi-
nally, the derivation of any predictive variable or measurement
technique could then be followed by cross-validation studies;
this type of follow-up is essential, because a predictive assess-
ment technique should be shown to work where it is needed,
i.e., in cases where the outcome is unknown. Crane and New-
man (1996) argue that progress in environmental toxicology
is more likely by a pluralistic approach that is embedded in a
systematic structure, and they point out that, “. . . the sole use
of classical statistical techniques may overlook useful contri-
butions from Bayesian theory” (p.120). I would suggest that
the six recommendations outlined above provide such a plu-
ralistic approach, but I would discourage altogether the use of
classical statistical techniques (NHST) for the reasons pointed
out earlier.

It would be unreasonable to think that ecologists will em-
brace these approaches any more rapidly or willingly than
mental-health practitioners have over the past 40 years; aside
from the normal resistance or inertia to preserve the status quo
and to do things the way they have always been done, i.e., the
way ecologists were trained or taught, these approaches can, on
first glance, appear threatening. Once valid predictors are es-
tablished and reliable actuarial methods developed, why would
anyone require the scientist or expert to interpret the data? A
common anti-actuarial argument to prevent this frightening
potential endpoint from occurring is that “group statistics” do
not apply to single events, and, therefore, the expert is still re-
quired to interpret the unique aspects of a particular case. As
Dawes et al. (1989) point out, this is really a misconception
that ignores basic principles of probability. While individual
events or situations will no doubt exhibit unique features, they
typically share common features with other events and (or) sit-
uations that would permit the previously established predictor
variables to be tallied and an outcome predicted at a specified
power. The authors drive this point home by stating,

An advocate of this anti-actuarial position would
have to maintain, for the sake of logical consis-
tency, that if one is forced to play Russian roulette
a single time and is allowed to select a gun with
one or five bullets in the chamber, the uniqueness
of the event makes the choice arbitrary.

The one item in the above list that would have the biggest
impact on improving our ability to assess ecosystem health (in-
terpret bioaccumulation results, assess sediment quality crite-
ria, perform valid risk assessments, etc.) would be to abandon
NHST and switch to Bayesian models. There are two crucial
rules that should be evident from the earlier example of the
algal bloom diagnosis (Arkes 1981):

1. If the prior odds arex/y, then the likelihood ratio must
be larger thany/x for the hypothesis to be correct more
than 50% of the time

2. The lower the prior odds, the greater the likelihood ratio
has to be to justify that hypothesis.

For example, if the prior odds are1/2, a likelihood ratio of
4/1 makes the hypothesis likely (p = 0.67). If the condition or
outcome you are trying to assess is rather rare, i.e., 1/100, then
the same likelihood ratio puts your hypothesis in the long shot
category (p = 0.04). It is ludicrous to think we will improve
our diagnostic accuracy in ecological investigations or interpret
results in a meaningful fashion if we continue to ignore base
rates; it is important to always keep in mind that posterior odds
are essentially a contest between prior odds and the likelihood
ratio (therefore, base rates cannot be ignored). This also will
lead to a much more accurate assessment of covariation in the
environmental predictors we are trying to validate.

The need to acknowledge the base rates and take into ac-
count the prior odds brings to the forefront the main criticism
to which people point as the reason not to use Bayesian statis-
tical methods. Bayesian analysis requires a prior distribution
for the unknown parameter being studied. Most investigators,
when pressed, would contend that they have no idea what the
prior odds are for the particular phenomenon they are study-
ing (this is, in fact, the main reason they are collecting data
in the first place). Therefore, the more “objective” approach
of classical (Fisherian) statistics is justified as appropriate for
scientific investigations. However, stating that one has no idea,
or that one value is just as good as any other value, implies
the notion of a rectangular distribution for the possible range
of values for the unknown parameter (Iverson 1984). Even the
rectangular distribution embodies some information about the
parameter, and it also represents a step up from having no idea
at all. There are problems associated with using the rectangular
distribution (one of a class known as noninformative priors) in
Bayesian analysis for the prior odds, and the reader is referred
to texts that deal with this issue in more detail (e.g., Raiffa
1968; Schmitt 1969; Iverson 1984; Berger 1985). However,
there usually is some available prior information, because re-
search is never done in a vacuum (if absolutely nothing was
known about a parameter, then no one would have ever thought
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of doing research in the first place).Whatever prior information
does exist, regardless of how vague, usually can be expressed
in an informative rather than a noninformative prior distribu-
tion. Edwards et al. (1963) point out that prior distributions are
often quite vague, and it is most likely this vagueness that has
discouraged investigators from adopting Bayesian techniques
over classical statistical methods. The authors capture the irony
of this discomfort by paraphrasing de Finetti’s (1959, p. 19)
reflections on the inherent construct of the Bayesian objection-
ists’ arguments:

We see that it is not secure to build on sand. Take
away the sand, we shall build on the void.

The advantages of Bayesian methods over classical meth-
ods for data inference are numerous (Edwards et al. 1963; Efron
1986; Berger and Berry 1988; Reckhow 1990, 1994; Howson
and Urbach 1991). The attractiveness of Bayesian methods re-
sides in its parallel construct with research methodology. Re-
search is cumulative, and while classical statistics are based
on the “once-ness” of the experiment, Bayesian methods per-
mit the use of knowledge or results from earlier research in
the formulation of results from new research. However, critics
continually counter that subjective prior distributions have no
place in an objective scientific analysis. Very few statistical
analyses even approximate objectivity. Both Iverson (1984)
and Berger (1985) point out that classical statistics are just
as subjective as Bayesian analysis, and that subjectivity is ex-
pressed in the choice of the significance level and the choice
of the statistical model used for the final analysis (which can
have a much greater impact on the outcome than the choice
of a prior distribution). Box (1980) expressed surprise at how
expressing probabilities for prior beliefs has been thought of
as a trait peculiar to Bayesian inference, and that

this seems to come from the curious idea that an
outright assumption does not count as a prior be-
lief.

Good (1973) was much more blunt by stating,

The subjectivist states his judgements, whereas
the objectivist sweeps them under the carpet by
calling assumptions knowledge, and he basks in
the glorious objectivity of science.

The use of priors in Bayesian methods brings the subjective
aspects of the analysis out in the open; the analyst is forced to
express personal opinions and biases, and each reader can make
their own assessment about the reasonableness of the priors.
Anyone is free to apply their own set of priors on the data if
they so desire to see how it affects the posterior distribution, but
for large samples, the prior distributions typically have little
or no effect on the posterior distribution (principle of stable
estimation; see Iverson 1984 for more details).

While there is not a universally accepted way for assigning
prior probabilities (Jefferys and Berger 1992), there do exist

well-developed techniques for calculating prior odds. Unfor-
tunately, many of them are not for the statistically unsophis-
ticated; a quick glance at the formulas in Chap. 3 of Berger
(1985) will confirm this. Instead of shunning a Bayesian ap-
proach because these calculations may be more advanced than
most ecological investigators are used to dealing with (they
are not one of the statistical function choices in an Excelr
spread-sheet or an option in Statistical Package for the So-
cial Sciences (SPSS) routines), it would be much more fruitful
to enlist the help and collaboration of statisticians trained in
Bayesian methods. Our task as ecologists, risk assessors, or
environmental scientists would be to acquire a rudimentary
understanding of Bayesian methods to provide the statistician
with the information they need to perform their analyses (see
Winkler 1967, for a good example of how nonstatisticians were
guided in constructing their priors) and then interpret the re-
sults in a relevant context for the particular ecosystem under
investigation.

I would venture that developing actuarial methods through
these approaches, rather than making the individual expert ob-
solete, would have just the opposite effect. This shift in inves-
tigative focus in the field of ecology and risk assessment would
increase the demand for trained investigators and open up a di-
versity of new avenues for research aimed at establishing valid
predictors of environmental health; these, in turn, would nec-
essarily lead to new levels of understanding about as well as
new models of how ecosystems function (which in turn would
lead to new lines of research, etc.).While it would require some
initial retraining of some of us grey-hairs in the field, we can
take solace from remembering that Andrés Segovia took his
first guitar lesson at the age of forty-five, and some of the most
brilliant lectures on ecology delivered at Yale were done by
G.E. Hutchinson when he was in his eighties.

Discussion

It is sobering to reflect on the possible ramifications of
some of the viewpoints expressed in this paper. A positive im-
pact (and hopefully the primary one) will be to provide in-
vestigators with a new set of lenses through which they can
view existing databases or design new investigations to dis-
cover insights about ecosystem structure and function. The cur-
rent state of ambiguity in predicting bioeffects from suggested
sediment quality guidelines with relatively low reliability, e.g.,
false negatives≤ 25% (Long et al. 1998), would be drastically
revised once investigators adjusted their conclusions by pay-
ing attention to base rates and accurately assessed covariation
to decide if these proposed guidelines really are valid predic-
tors of environmental health. It would also prevent sediment
criteria from being derived by methods that ignore procedures
covered earlier that would increase the diagnostic accuracy of
these predictors. Another positive impact would be a complete
revision for the way ecological risk assessments are done, with
a justifiable dismissal of conclusions reached from calculating
questionable or unvalidated metrics such as Hazard Indices or
Hazard Quotients (a classic example of admitting insufficient
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evidence as sufficient; see Faust 1986a for further details).
The downside is that anyone can use the arguments pre-

sented earlier in Part 1 of this paper to derail any conclu-
sions based on results from classical statistical tests structured
around the sacredp value of 0.05. This could range from dis-
missing results from toxicity or bioaccumulation testing in the
wide variety of permit applications, enforcement actions, or
court cases dealing with contaminated sediment management
to determining injury in NRDA cases. A great deal of environ-
mental case law is unfortunately structured around and based
upon misunderstandings about statistical significance. For ex-
ample, in Ohio versus Department of Interior, 880 F.2d 432
(D.C. Cir. 1989), the court analyzed what type of causal link
must be shown between a substance release and an injury to es-
tablish National Resource Damage (NRD) liability. The court
upheld the Department of the Interior (DOI) Rules that state
that to show biological injury, a trustee must show that a num-
ber of acceptance criteria are met, including that the biological
response identified differs in a “statistically significant” way
from the condition of similar organisms in a control area; as
pointed out earlier, this is easily achieved merely by taking
a sufficient number of samples. It is also difficult to ignore
the irrelevance of standard statistical significance testing be-
cause of “odds against chance” fantasy outlined earlier, as well
as the minor detail that standard statistical tests tell us abso-
lutely nothing about the validity of our research hypothesis; all
of these arguments would make it quite easy for any skillful
lawyer to repudiate any claims of environmental injury based
on results from standard tests of statistical significance. Stan-
dard statistical techniques do have a proper place and can be
improved tremendously by the application of modern meth-
ods (see Rand 1996, 1997, 1998); the main point of this paper
is that they have provided more heat than light as inferential
discriminators to discover valid predictors of environmental
health.

Classical procedures are very asymmetric (in Fisher’s in-
ference model, the choices arerejectandinconclusive, whereas
in the decision theory approach, the choices arerejectandac-
cept). Bayesian procedures, in stark contrast, can strengthen
as well as weaken a null hypothesis. In classical approaches, if
the null hypothesis is rejected, the alternative is willingly em-
braced, whereas if it is not rejected, it remains in a “limbo of
suspended disbelief” (Edwards et al. 1963). Ecological inves-
tigators who feel more comfortable or insist on using classical
techniques would fare much better by distinguishing between
“sharp” versus “loose” null hypotheses; as pointed out earlier,
there is usually little reason to believe a sharp null hypothesis
actually exists in nature, so logic would suggest that we should
not test a hypothesis of zero relationship when we want to es-
tablish that a relationship actually does exist; as Mohr (1990)
points out, rejecting a claim of precisely zero is not very infor-
mative. Not every choice is dichotomous, corresponding to a
simple partition between two hypotheses, because gradations
of difference within each hypothesis can be important. The
times in life are relatively few when we must choose between
exactly two acts, one appropriate to the null hypothesis and

the other to its alternative. People would not save for their re-
tirement if they believed they would die before they stopped
working, and they would not buy life insurance if they be-
lieved they would not. Many intermediate acts, or bet hedg-
ing, is possible with most situations, and this continuum of
relationships that can be addressed with Bayesian models is
the more appropriate one for ecological risk assessment (Hill
1996). Instead of always employing sharp null hypotheses, the
investigator using classical methods should frame the test by
saying, “I believe there is a relationship in the population of at
least such-and-such magnitude.” The practical problem is that
it forces the investigator to think about and supply meaningful
numbers to computer programs (and it would also require that
these computer programsask for these input parameters in-
stead of automatically throwing zero in the formula fort). The
Bayesian analyst is unlikely to consider a sharp null hypothesis
as often as someone using classical techniques; it would make
no sense unless the null hypothesis deserves some special ini-
tial credence or the Bayesian’s prior distribution has a sharp
spike around the null hypothesis value.

The popularity of statistical significance testing would de-
cline if researchers and regulators recognized that it isnot a
predictor of replicability of research data. As Stevens (1971)
pointed out over 25 years ago,

In the long run, scientists tend to believe only those
results that they can reproduce. There appears to
be no better option than to await the outcome of
replications. It is probably fair to say that statisti-
cal tests of significance, as they are so often mis-
called, have never convinced a scientist of any-
thing (p. 440).

Berkson (1938) has suggested the use of the

interocular traumatic test: you know what the data
mean when the conclusion hits you between the
eyes (Edwards et al. 1963).

As Dominic DiToro so aptly stated at a national EPA confer-
ence on sediments in 1996,

Statistics should be used like a drunk uses a lamp
post: more for support than illumination.

Ecological researchers and environmental risk assessors need
to overcome the misplaced belief that if their treatment of sub-
ject is mathematical, it is therefore precise and valid.

A paradigm shift in how ecological data are assessed would
not only allow the development of more precise “ecological
laws” (sensuLoehle 1988) and point the way to valid predic-
tors of environmental health, but it would also likely affect our
perception of ecosystem function. Whether or not particular
data are used will affect what we observe actually “exists” in
the particular system we are studying. For example, most peo-
ple in the United States are incorrect in their answers about
which way Lincoln’s profile faces on a penny, because they
do not normally use this information. This example illustrates
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the difference between perceiving and observing; perceiving
is prior to observation. Observed information can be reported
verbally and processed, while perceived data that are not ob-
served cannot be reported or factored into conclusions or re-
sults. Just because something is perceived does not mean that
it is observed, and something can also be observed without
appreciating its significance in terms of how it affects ecosys-
tem function (in familiar terms for benthic ecologists, just what
do all those nematodes, ostracods, or unidentified oligochaetes
really mean when you count them in a benthic sample?).

Scientific “truth” has always been a relative term, as any
historian of science is quick to point out: today’s scientific
“facts” are looked upon with bemused curiosity by future gen-
erations in relation to the contemporary accepted scientific con-
structs, similar to how parents chuckle at a child’s internal logic
of “where babies come from” in relation to known human re-
productive physiology. Kuhn (1962) pointed out over 30 years
ago that major changes in thinking or “paradigm shifts” have
come about because of both a willingness of people to ques-
tion the status quo and to invest a concerted effort in alternative
approaches, not just because a better theory has arrived on the
scene. Science will progress only “after the new paradigm has
been developed, accepted, and exploited” (p. 156). The change
in direction that new theories dictate is not simply determined
by internal logic, but by other societal factors that come into
play to determine the community’s choice of a “best theory”
(Keller 1985). The implications of this, as Keller has pointed
out in her outstanding work, is that not only different collec-
tions of facts or different focal points of scientific attention
are consistent with what we call science, but so are different
organizations of knowledge and interpretations of the world.

What is being proposed in this paper is not just a mere
substitution of Bayesian methods for NHST; anyone agreeing
with the thoughts presented in this manuscript who quickly
runs out and starts reading material on Bayesian statistics with
the hope of finding a new basis for automatic inference will
no doubt be disappointed (remember, it is only one of the six
suggested techniques for improving diagnostic accuracy). In
his landmark text, Raiffa (1968) pointed out that students in
their first course in statistics learn that they must constantly
balance between making an error of the first kind (rejecting
the null hypothesis when it is true) with the error of the sec-
ond kind (accepting the null hypothesis when it is false). He
credited Tukey with suggesting that all too often, practitioners
make errors of a third kind (solving the wrong problem), and
he nominates a candidate for errors of the fourth kind: solving
the right problem too late. My hope is that if ecologists and risk
assessors adopt the approaches outlined in this paper, we can
stop making the first three kinds of errors in our routine inves-
tigations and finally develop accurate predictors of ecosystem
health. Risk assessments and environmental regulations will
only make sense if they are based on valid environmental pre-
dictors, and therein lies our hope for not committing errors of
the fourth kind.
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